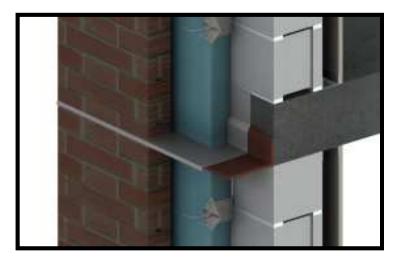
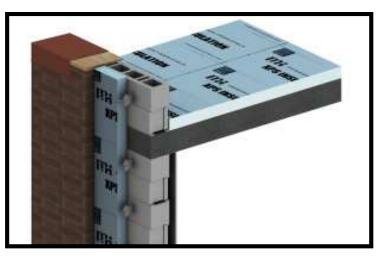
Thermal Bridging and Energy Standards 2014 BOABC Education Conference

November 27, 2014

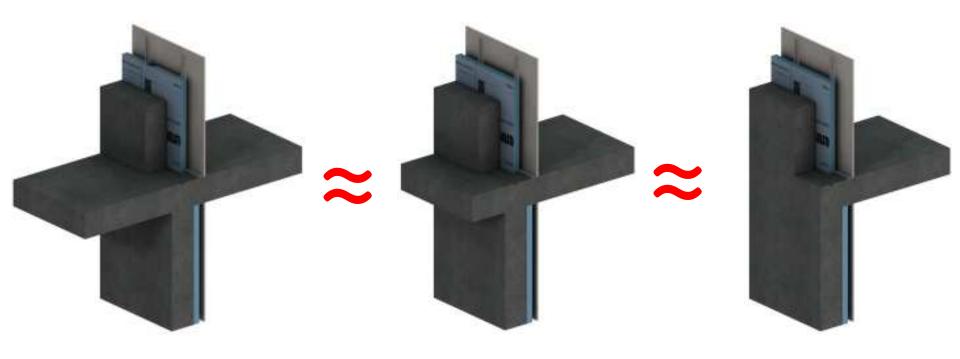
Current Energy Standards vs. Research Insights


- Building Envelope Thermal Bridging Guide
 - Overview
 - Significance, Insights, and Next Steps
- Current Energy Codes and Standards
 - Overview
 - Development
- Q&A

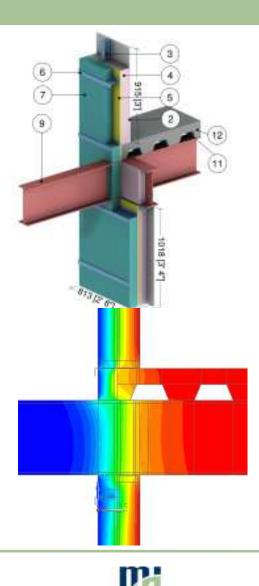


What is Thermal Bridging?

- Highly conductive material that by-passes insulation layer
- Areas of high heat transfer
- Can greatly affect the thermal performance of assemblies


Why Care about Thermal Bridging?

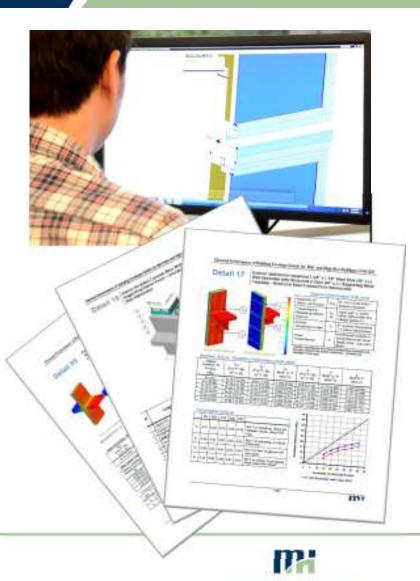
Exposed Floors



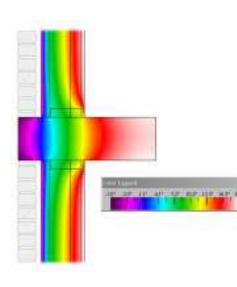
5

Why Care about Thermal Bridging?

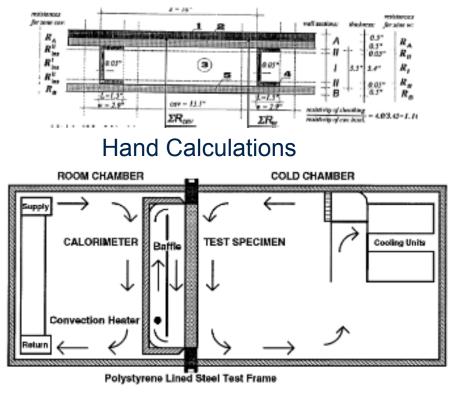
- Heat flows determine:
 - Heating and cooling system capacity
 - Purchased energy requirements
 - Compliance with energy codes
 - Compliance with voluntary energy programs
- Arrangement of materials determine:
 - Surface temperatures
 - Condensation and moisture collection
 - Durability
 - Mold growth and health issues



Five Years Ago...

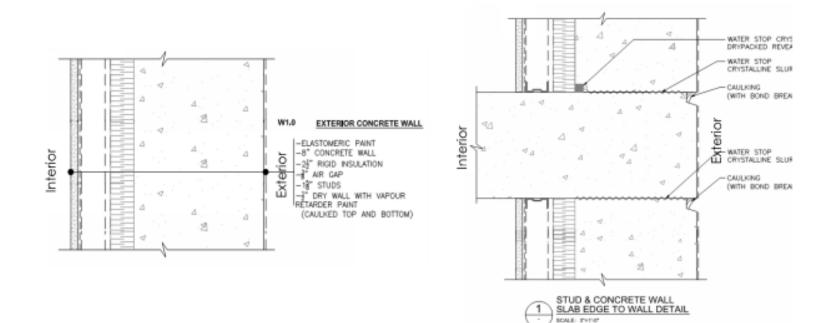


- We went 3D with serious software
- Validated our model and procedures to measured data
- Borrowed a methodology from Europe and applied to North American practice
- Started a catalogue of thermal performance data



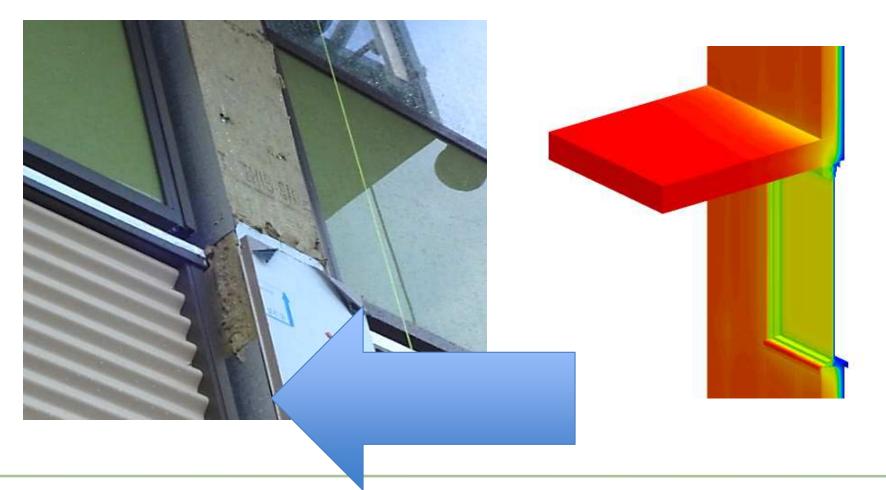
Five Years Ago...

North American Data and Procedures in Energy Standards Pre-date 1365-RP


Computer Modeling

Lab Measurement

Interface Details


A Clear Field Assembly

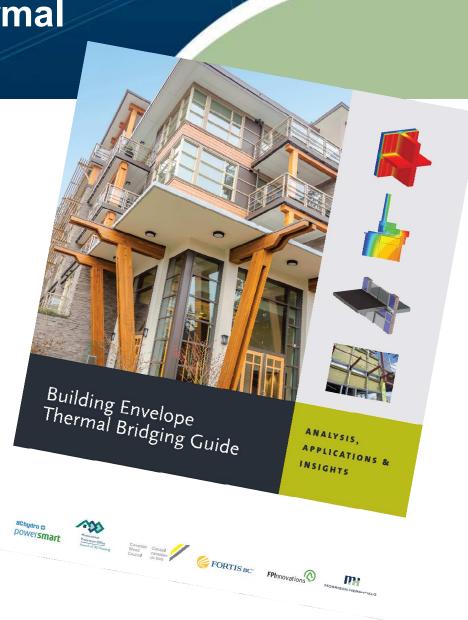
A Interface Detail

9

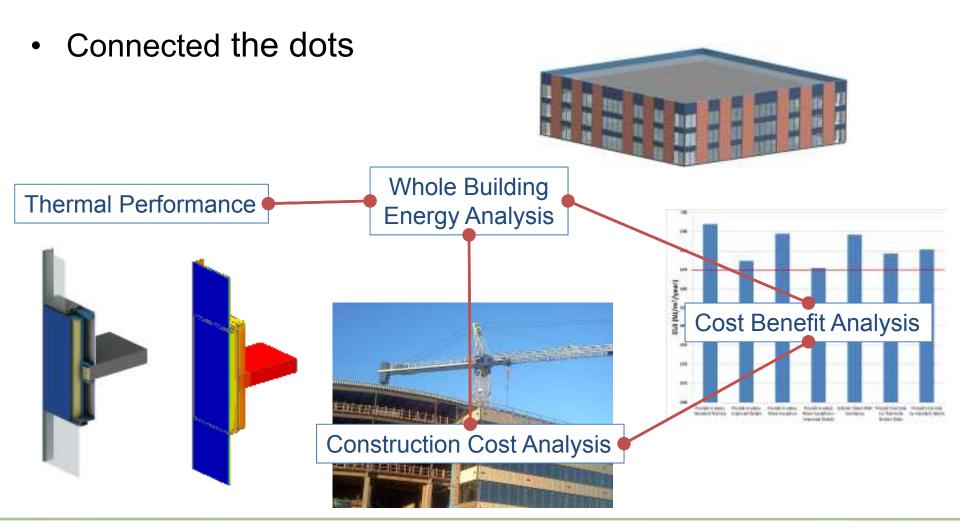
Interface Details

Building Envelope Thermal Bridging Guide

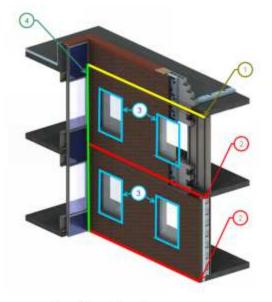
BChydro C powersmart



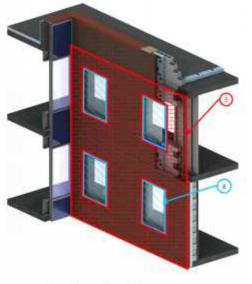
Canadian Wood Council



1365-RP and Beyond


Guides within a Guide

Introduction


- Part 1 Building Envelope Thermal Analysis
 (BETA) Guide
- Part 2 Energy and Cost Analysis
- Part 3 Significance, Insights, and Next Steps
- Appendix A Material Data Catalogue
- Appendix B Thermal Data Catalogue
- Appendix C Energy Modeling Analysis and Results
- Appendix D Construction Costs
- Appendix E Cost Benefit Analysis

Part 1: Building Envelope Thermal Analysis (BETA)

- 1. Parapet Length
- 2. Slab Lengths
- 3. Wall to Window Transition Lengths

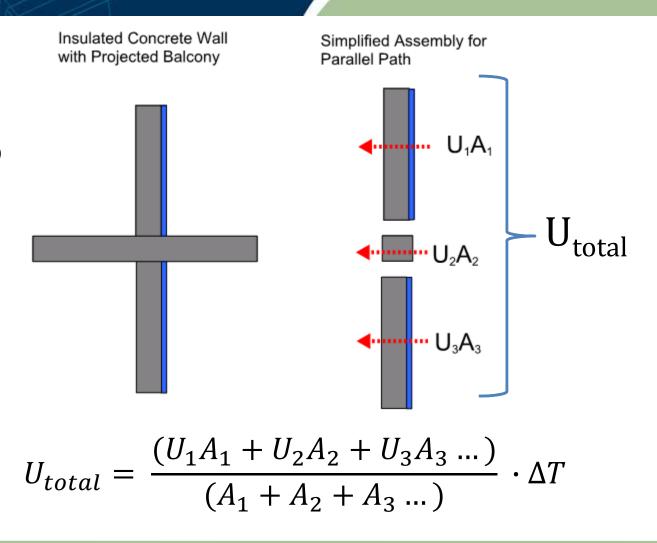
- 4. Corner Length
- 5. Opaque Brick Wall Area
- 6. Glazing Area


- BETA Method
- Catalogue Summary

- Utilization
- Energy Model Inputs

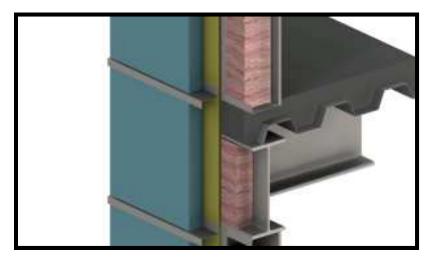
Part 1: Building Envelope Thermal Analysis (BETA)

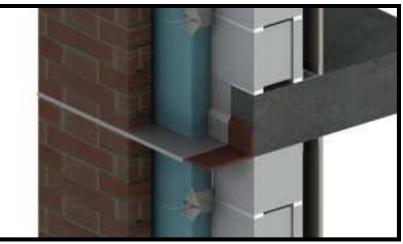
- Refines ASHRAE 1365 Methodology
- Step by Step examples
- Now called the BETA method



Beyond parallel path assumptions

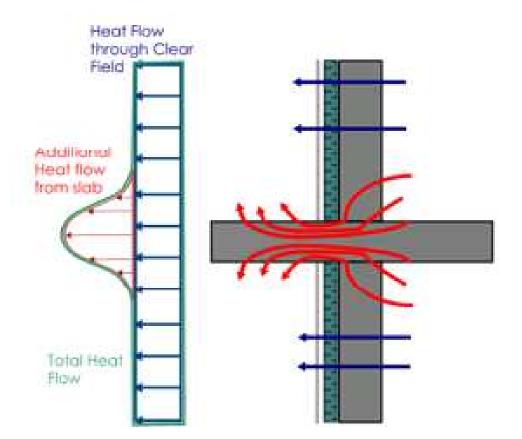
- Assumes heat flows are separate and do not influence each other
 - Averages

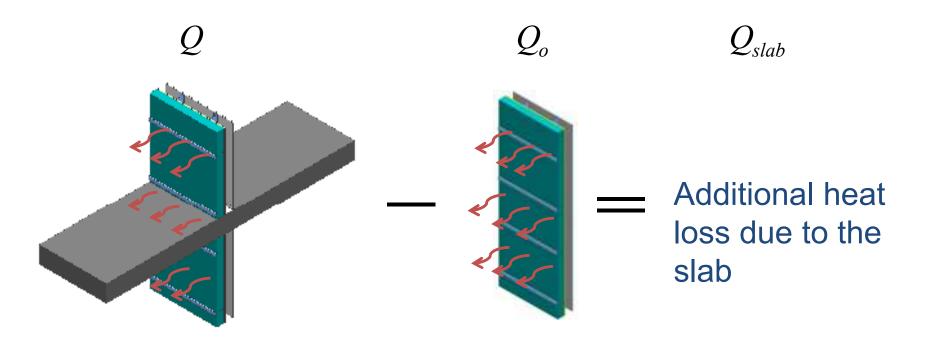

 overall heat
 flow/resistance
 based on the
 areas of
 components



Why moving beyond this is a good thing

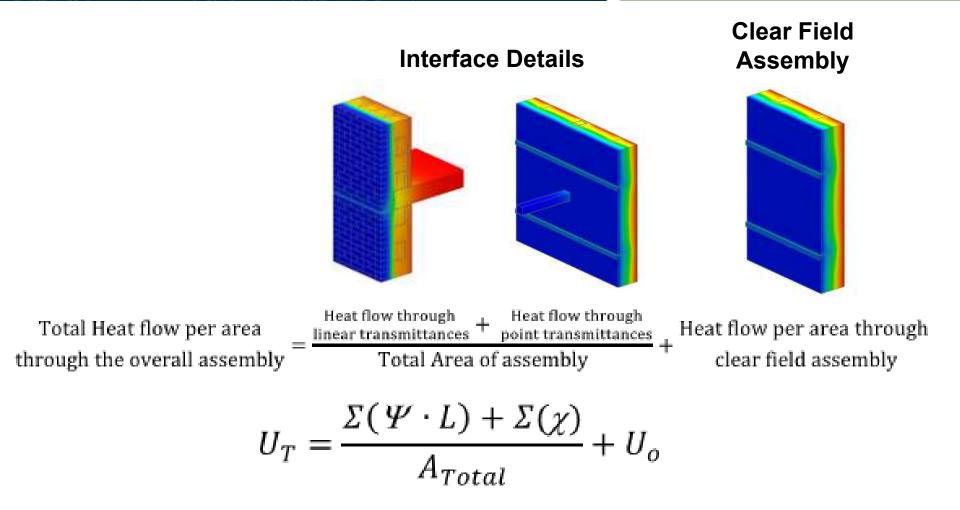
- Parallel path doesn't tell the whole story
- Many thermal bridges don't abide by "areas"
- There is an easier way to account for details across the board
- Level playing field will be created when all thermal bridges are thoroughly evaluated




Part 1: Building Envelope Thermal Analysis (BETA)

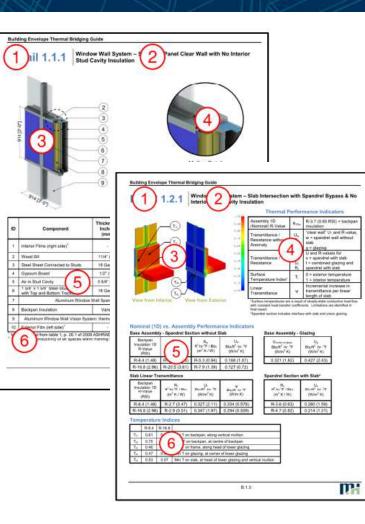
 Part 1 shows how to translate heat flows (clear field, linear and point transmittances) into overall U-values

Overall Heat Loss


Overall Heat Loss

linear transmittance represents the additional heat flow because of the slab, but with area set to zero

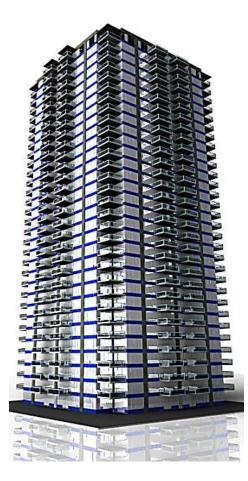
Overall U-value (aka "Effective" R-value)

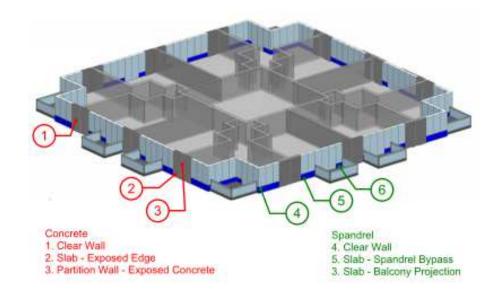


Range of Transmittances

FLOOR AND BALCONY SLABS	Performance Category		Description and Examples	Linear Transmittance	
				<u>Btu</u> hr ft F	₩ m K
		Efficient	Fully insulated with only small conductive bypasses Examples: exterior insulated wall and floor slab.	0.12	0.2
	Improved		Thermally broken and intermittent structural connections Examples: structural thermal breaks, stand- off shelf angles.	0.20	0.35
		Regular	Under-insulated and continuous structural connections Examples: partial insulated floor (i.e. firestop), shelf angles attached directly to the floor slab.	0.29	0.5
		Poor	Un-insulated and major conductive bypasses Examples: un-insulated balconies and exposed floor slabs.	0.58	1.0

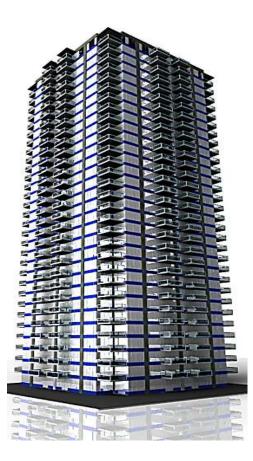
Appendix A and B




CATALOGUE INDEX

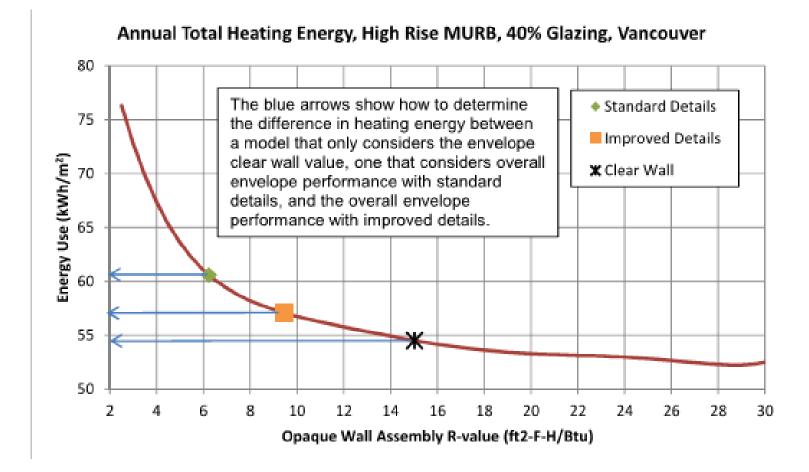
1.0	Window Wall	A.1.i
2.0	Conventional Curtain Wall	A.2.i
3.0	Unitized Curtain Wall	A.3.i
4.0	High Performance Curtain Wall	A.4.i
5.0	Steel Stud Construction	A.5.i
6.0	Concrete Construction	A.6.i
7.0	Wood Frame Construction	A.7.i
8.0	Doors and Balconies	A.8.i
9.0	Roofs	A.9.i

Example from the Guide



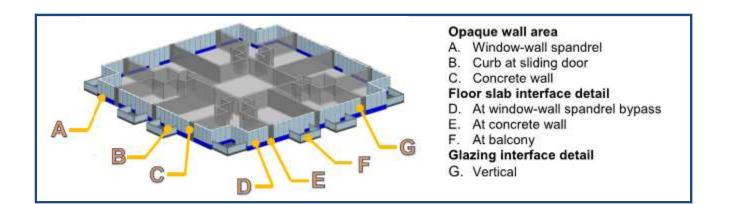
Example from the Guide

Step 1-2	Step 3	Step 4		itep 5	Step 6-7	
Transmittance Type		Quantity	Detail Ref.	Transmittance	Heat Flow (W/K)	% of Total Heat Flow
	Clear Field	2987 m ²	6.2.2	0.42 W/m ² K	1254	16%
Vall	Parapet	27 m	6.5.3	0.78 W/mK	21	<1%
Concrete Wall	Exposed Floor Slab	1090 m	6.2.5	1.00 W/mK	1085	14%
Conc	At Grade Transition	27 m	ISO- 14863	0.75 W/mK	20	<1%
	Partition Wall	1315 m	6.2.2	0.67 W/mK	876	11%
Overall C	Concrete Wall U-v	0.192 (1.09)				
Overall C	Concrete Wall R-v	V)	5.2 (0.92)			
	Clear Field	1792 m ²	1.1.1	1.07 W/m ² K	1917	24%
wall el	Parapet	82 m	1.3.2	0.72 W/mK	59	<1%
-wc	Slab Bypass	1635 m	1.2.1	0.58 W/mK	945	12%
Window-wall Spandrel	Balcony Slab	1635 m	8.1.9	1.11 W/mK	1815	23%
M	At Grade Transition	82 m	2.5.1 (est.)	0.86 W/mK	70	<1%
Overall S	pandrel Wall U-v	0.472 (2.68)				
Overall Spandrel Wall R-value, hr ft ² °F/ BTU (m ² K/W)					2.11 (0.37)	
		8063	100%			
0	verall Opaque W	0.297 (1.68)				
Overall Opaque Wall R-value, hr ft ² °F/ BTU (m ² K/W)					3.4 (0.59)	



- Whole Building
 Energy Use
- Construction Costs
- Cost Benefit

Construction Costs

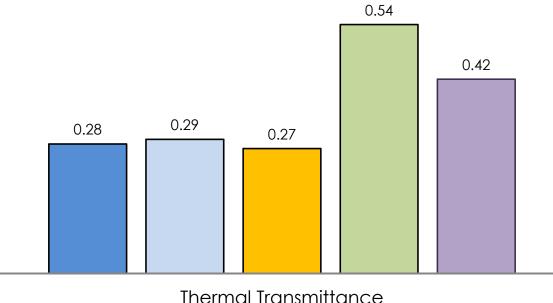

- Broad order of magnitude estimates, +-50%
- Not arrived at for a specific building nor is there a comprehensive list of requirements to base assumptions
- Construction costs vary quite widely in practice, even with detailed designs

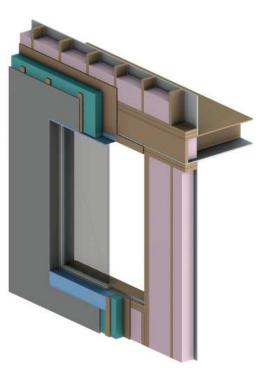
Cost Benefit Analysis

- The Impact of Interface Details
- Thermal Bridging Avoidance
- The Effectiveness of Adding More Insulation
- Ranking of Opaque Thermal Performance

Building Envelope Thermal Bridging Guide (BETB Guide)

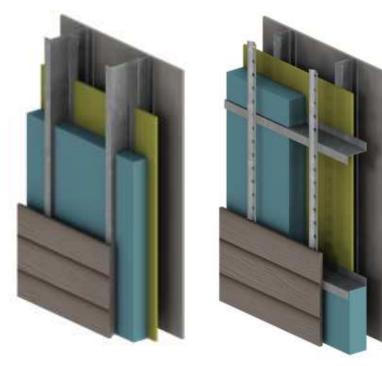
Insights

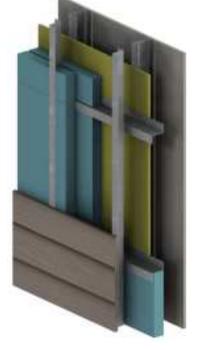


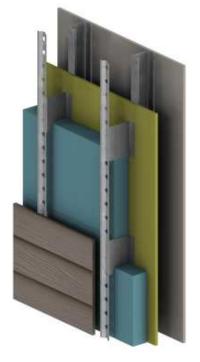

Building Envelope Thermal Bridging Guide (BETB Guide)

NECB 2011 Zone 5 Prescriptive Requirement
 ASHRAE 90.1-2010 Zone 5 Prescriptive Requirement
 ASHRAE 90.1 Calculation

BETA Calculation with standard details

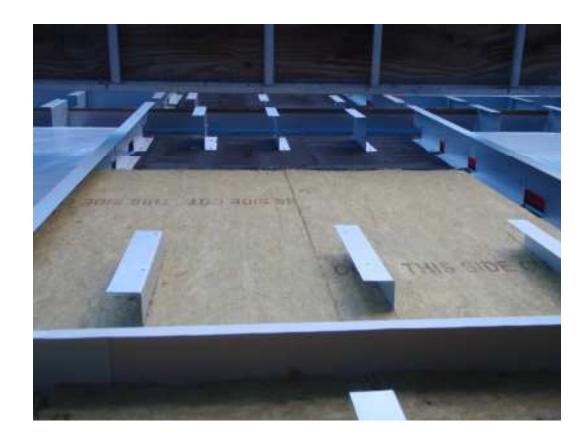

BETA Calculation with improved details





MARKET TRANSFORMATION

Vertical Z-Girts Horizontal Z-Girts

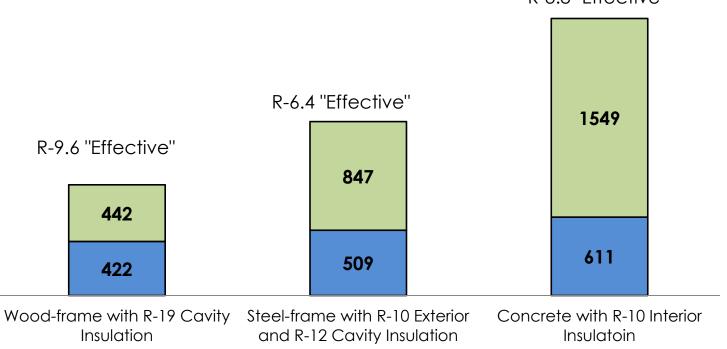

Mixed Z-Girts

Intermittent Z-Girts

Origins of Improved Systems



Continuous Girts are Now Discrete Systems



Interface Details are Significant

■ heat flow associated with details

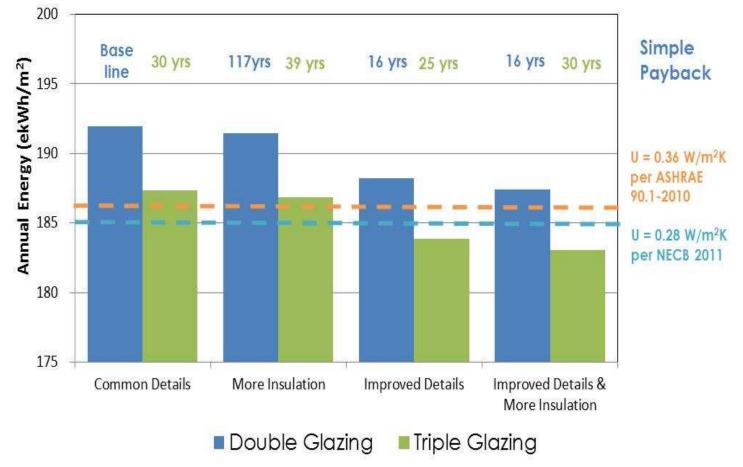

heat flow associated with clear field assembly

R-3.8 "Effective"

Interface Details are Significant

Wall Assembly U-Value per ASHRAE 90.1

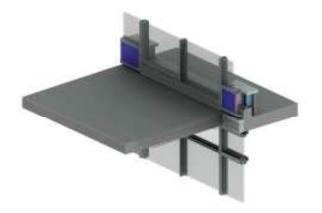
Wall Assembly U-Value per NECB 2011



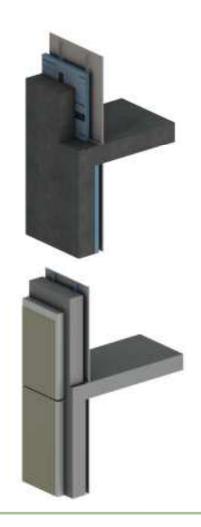
Interface Details are Significant

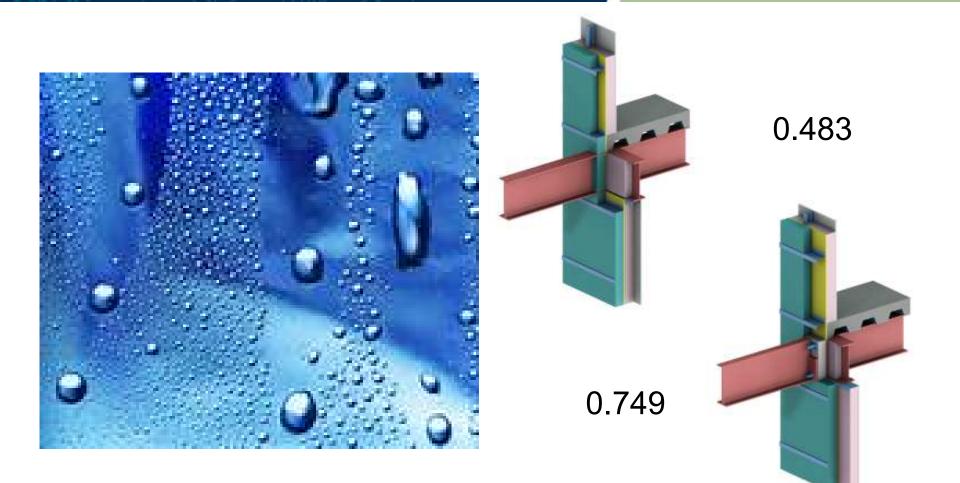
Building Type	NECB 2011 Zone 5 U-Value	BETA Calculation Value	% Incr. U-Value	Total Energy Difference ekWh/m ²	Energy Cost Difference \$/m ²
Commercial Office	0.28	1.02	263%	14	\$ 0.51
High-Rise MURB	0.28	1.54	663%	16	\$ 1.39
Hotel	0.28	1.45	418%	22	\$ 0.64
Large Institutional	0.28	1.07	283%	36	\$ 1.21
Low-Rise MURB	0.28	1.31	369%	14	\$ 1.24
Non-Food Retail	0.28	0.55	96%	12	\$ 0.34
Recreation Centre	0.28	0.74	165%	7	\$ 0.34
Secondary School	0.28	1.50	436%	15	\$ 0.53

Interface Details are Significant

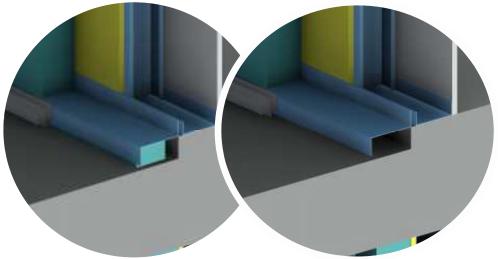

High-Rise MURB with 40% Glazing in Vancouver

The Effectiveness of Adding More Insulation

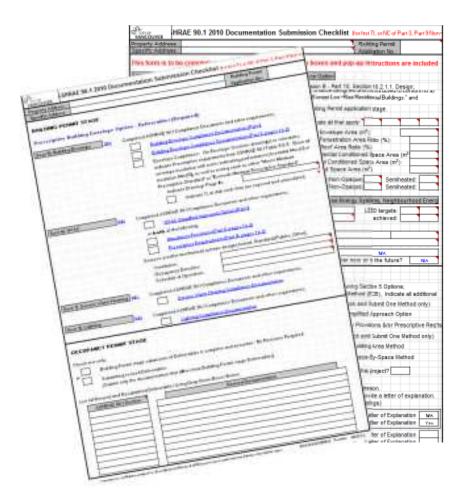

- Even some "expensive" options look attractive when compared to the cost effectiveness of adding insulation
- The cost to upgrade to thermally broken balconies and parapets for the high-rise MURB with 40% glazing may require two to three times the cost of increasing effective wall assembly R-value from R-15.6 to R-20
- Seven times more energy savings
- Better details AND adding insulation translates to the most energy savings and the best payback period


Exterior Insulation Finish Systems (EIFS)

- EIFS with improved details is a 69% improvement in U-value
- A savings of 14 ekW/m² in electricity energy was determined for the high-rise MURB with 40% glazing
- An example where EIFS is more expensive
- There is currently no incentive to realize these savings

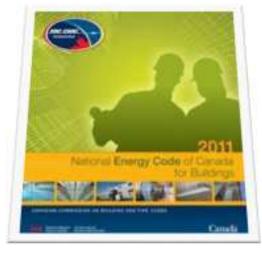

Condensation

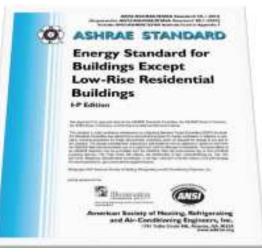
The Bottom Line


- More attention needs to be paid to minimizing thermal bridging at interface details for all buildings
- More energy savings can be realized with improving details than simply adding more insulation
- Sometimes a small amount of insulation in a gap makes a difference

Role and Challenges of the AHJ

- Move past only checking insulation levels
- Differences and silence on thermal bridges at interface details has created confusion and enforcement challenges
- Enforcement requires understanding of the differences between the reference standards



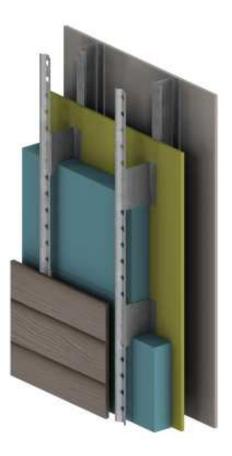


Energy Codes and Standards

Overview

- ASHRAE Standard 90.1
- NECB
- 9.36

Energy Standards


Thermal bridges at transitions is currently not captured

- Not punished
- Or rewarded to implement feasible solutions to mitigate thermal bridging at interface details

Continuous Insulation vs. Insulation Continuity

- Despite the intent of the continuous insulation concept, to make it simple and not require calculations, this approach does effectively deal with thermal bridging
- NECB 2011 (and now 9.36) is based exclusively on effective U-values, but has many relaxations for accounting for thermal bridging

Envelope Requirements

	ASHRAE 90.1 2010	NECB 2011
Mandatory requirements	Yes, for all methods	Not for energy modeling
Prescriptive requirements	Generally less demanding R values	Stringent, specific
Framing	Accounted	Accounted
• Structure	Not clear	Specific
Cladding attachments	Accounted	Only if repetitive
Service penetrations	Ignore	Specific
Walls	More categories	Less categories
• Fenestration & doors	More categories	Less categories
Trade-off methods	Complex, no benefit if FDWR <40%	Simple or software Benefit if FDWR <40%

ASHRAE 90.1 Overview

ASHRAE 2004 Baseline

ASHRAE 2007 Increased BE requirements

ASHRAE 2010 No major changes in BE requirements

ASHARE 90.1 – Thermal Bridging

- Similar to NECB for wall assemblies, but with a lot less clarity
- Balcony slabs are uninsulated mass walls?
- Difficult to enforce for other common thermal bridges at interface details

continuous insulation (c.i.): insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.

	Non	Nonresidential		esidential	Semiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Insulation Maximum Min. R-Val		Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.119	R-7.6 c.i.
Metal Building ^a	U-0.055	R-13.0 + R-13.0	U-0.055	R-13.0 + R-13.0	U-0.083	R-13.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0
Walls, Above-Grade						
Mass	U-0.090	R-11.4 c.i.	U-0.080	R-13.3 c.i.	U-0.151 ^b	R-5.7 c.i. ^b
Metal Building	U-0.069	R-13.0 + R-5.6 c.i.	U-0.069	R-13.0 + R-5.6 c.i.	U-0.113	R-13.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0
Wood-Framed and Other	U-0.064	R-13.0 + R-3.8 c.i.	U-0.051	R-13.0 + R-7.5 c.i.	U-0.089	R-13.0

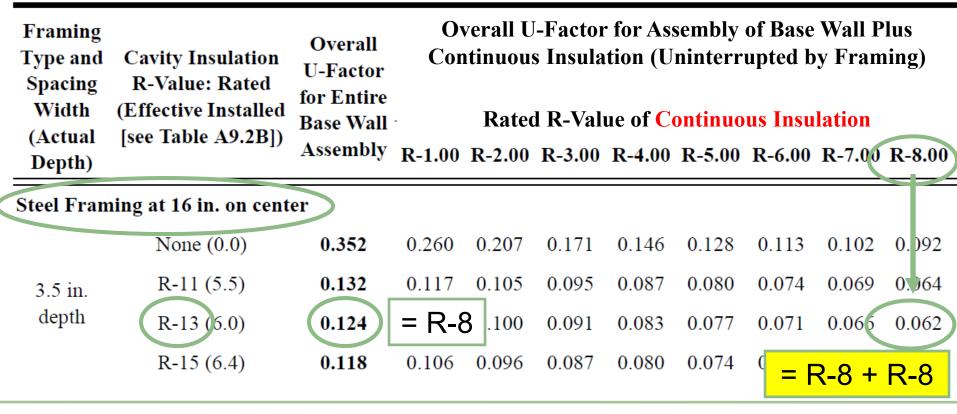
TABLE 5.5-5 Building Envelope Requirements for Climate Zone 5 (A, B, C)*

For multiple assemblies within a single class of construction for a single conditioning space, can be combined using a weighed average

Above Grade Walls

NECB 2011 Above-Grade Walls

	Any Occupancy						
Assemblies	R values (effective)						
	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8		
Walls	18	20.4	23	27	31		
Roofs	25	31	31	35	40		
Floors	25	31	31	35	40		


Mass	11.4
Metal Building	14.5
Steel-framed	15.6
Wood-framed and other	19.6

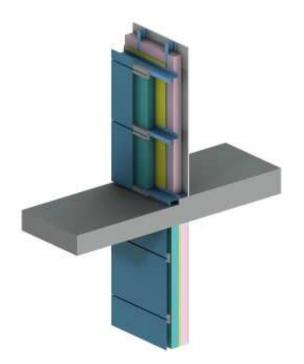
ASHRAE 90.1 – 2010 Above-Grade Walls Residential

Appendix A

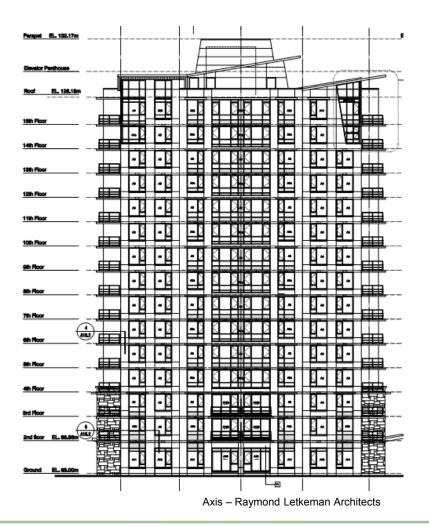
TABLE A3.3 Assembly U-Factors for Steel-Frame Walls

Acceptable calculation methods

	Construction Classes	Testing or Modeling	Series calculation method	Parallel path calculation method	Isothermal planes method
	Insulation above deck	\checkmark	\checkmark		
Roofs	Attic (wood joists)	\checkmark		\checkmark	
	Attic (steel joists)	\checkmark			\checkmark
	Mass	\checkmark			\checkmark
Walls	Steel framed	\checkmark			\checkmark
	Wood framed	\checkmark		\checkmark	


ASHRAE 90.1 Prescriptive - Fenestration

	Zone 5							
Components	Residential		Non-Res	sidential	Semi-Heated			
	U factor	SHGC	U factor	SHGC	U factor	SHGC		
Non-Metal Framing	0.35		0.35		1.20			
Metal Framing (curtain wall and storefront)	0.45		0.45		1.20			
Metal Framing (entrance doors)	0.80	0.40 for all	0.80	0.40 for all	1.20	0.40 for all		
Metal Framing (operable and fixed windows, non- entrance doors)	0.55		0.55		1.20			


Silence and Ambiguity Leads to an Un-level Playing Field

Can a Concrete Balcony and Steel-Frame Wall comply with the Prescriptive Path?

ASHRAE 90.1 Trade-off

Need to :

- Do take-offs for all the different BE components i.e. floor, roof, wall and fenestration assemblies for <u>every</u> <u>space-conditioning category</u> and <u>every orientation</u>.
- Evaluate the U values of each component including SHGC and VT for fenestration.
- Enter all the numbers into a series of equations that you can find in normative Appendix C*.
- * COMcheck (Now has Canadian climate data).

COMcheck

Section 2: General Information

Building Location (for weather data): Climate Zone: Building Space Conditioning Type(s): Vertical Glazing / Wall Area Pct.: Vancouver, British Columbia 5c Nonresidential 17%

Building Type

Retail

Floor Area 4152

Section 3: Envelope Assemblies

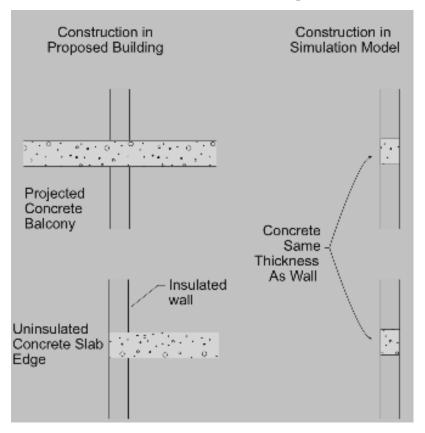
Envelope FAILS: Design 2% worse than code.

ASHRAE Code (ECB) vs. LEED (App G)

Section 11: Energy Cost Budget

Any envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described. If not separately described, the area of an envelope assembly must be added to the area of the adjacent assembly of that same type.

Appendix G


All uninsulated assemblies (e.g., projecting balconies, perimeter edges of intermediate floor stabs, concrete floor beams over parking garages, roof parapet) shall be separately modeled....

Any other envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described provided that it is similar to an assembly being modeled.

Silence and Ambiguity Leads to an Un-level Playing Field

Appendix G: Slab Edges

NECB (9.36) - Thermal bridging

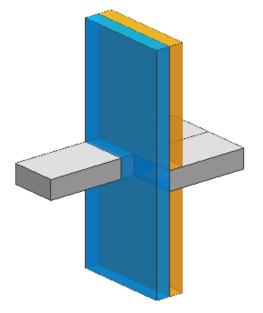
Clear Field Assembly

The thermal bridging effect of closely spaced repetitive structural members (e.g. studs) and of ancillary members (e.g. sill and plates) should be taken into account.

Floor Slab Interface Detail

The thermal bridging of major structural elements that are parallel to the building envelope can be ignored, provided that they do not increase the thermal transmittance to more than twice than permitted. maximum overall thermal transmittance at beam is twice that permitted for the wall

> maximum overall thermal transmittance permitted at wall as per Table 3.2.2.2.


NECB (9.36) - Thermal bridging

Clear Field Assembly

The thermal bridging effect of closely spaced repetitive structural members (e.g. studs) and of ancillary members (e.g. sill and plates) should be taken into account.

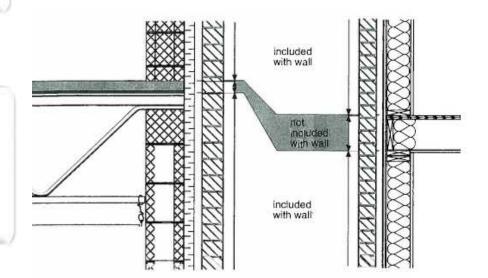
Balconies Interface Detail

The thermal bridging of major structural elements that must penetrate the building envelope need not be taken into account, provided that the sum of the areas is less than 2% of the above ground building envelope.

Layer Providing Insulation Continuity

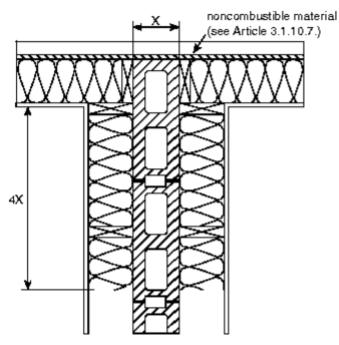
lı b

Insulation Interrupted by Structural Framing

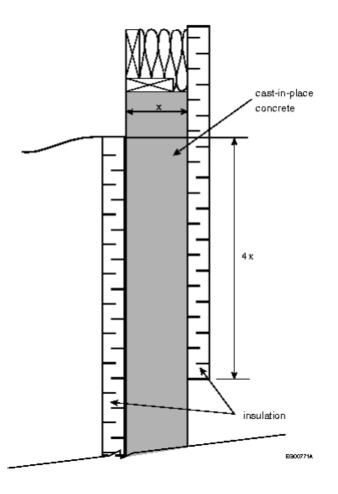

NECB (9.36) - Thermal bridging

Clear Field Assembly

The thermal bridging effect of closely spaced repetitive structural members (e.g. studs) and of ancillary members (e.g. sill and plates) should be taken into account.

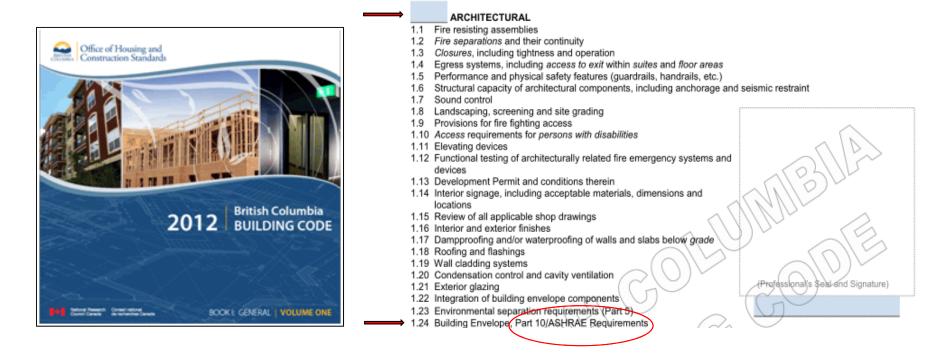

Clear Field and Interface Details?

...pipes, ducts, equipment with through-the-wall venting...shelf angles, anchors and ties and associated fasteners, and other minor structural members that must completely penetrate the building envelope to perform their intended function need not be taken into account



NECB (9.36) Insulation Continuity

EG00765A

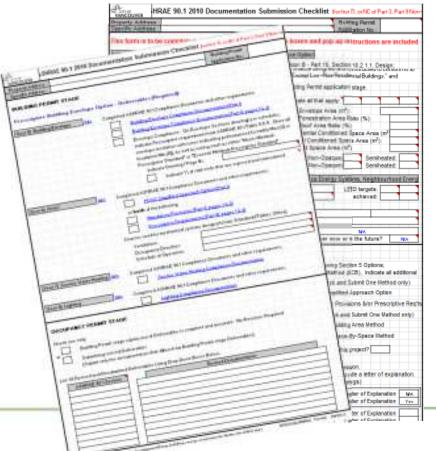


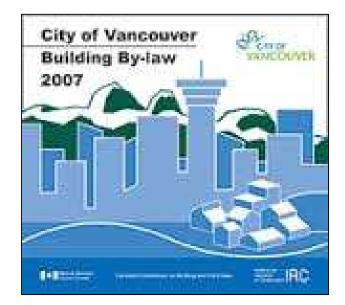
2012 BCBC - Enforcement

10.2.1.1. Design

1) Except as provided for in Sentence (2) or (4), all buildings shall be designed and constructed to conform to

- a) ANSI/ASHRAE/IESNA 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings", or
- b) NRCC 54435, "National Energy Code of Canada for Buildings."

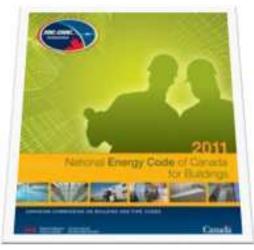


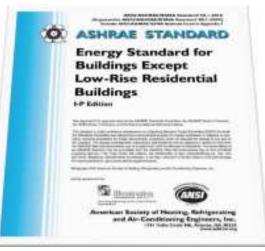


Vancouver Building by-law

Energy standards and conditions

Effective January 21, 2014, the Vancouver Building Bylaw requires the use of the energy standard ASHRAE 90.1-2010 or the energy code, National Energy Code of Canada for Buildings (NECB) 2011, in place of ASHRAE 90.1-2007. The standard and code have been implemented without additional addenda or errata.



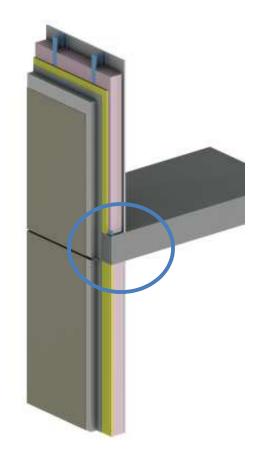


Energy Codes and Standards

Development

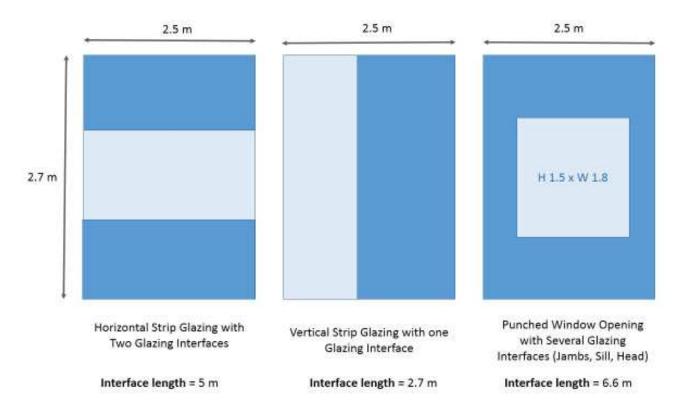
Reduce the Confusion

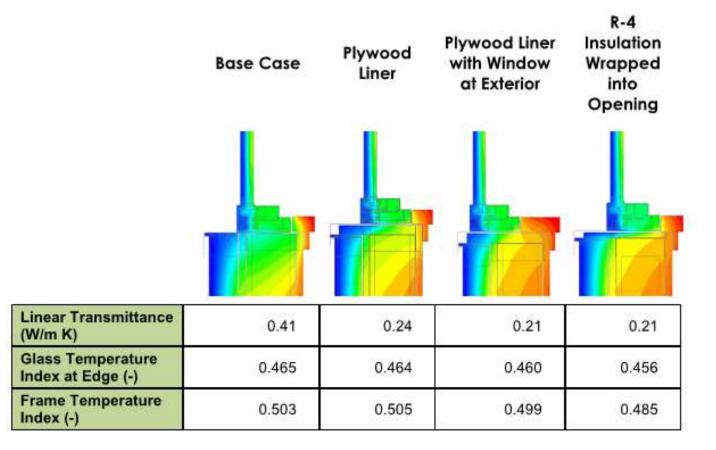
- We no longer need to ignore thermal bridging and apply haphazard exceptions based on assumptions that are no longer valid
- The BETB Guide provides a straightforward approach supported by a lot of data
- Straightforward to amend NECB and 9.36, but will require a detailed U-value calculation
- ASHRAE 90.1 is a little more complicated


Next Steps

- Improve the ability to enforce the code and level the playing field by adding clarity
- Replace "exceptions" based on wall areas with metrics that represent heat flow like linear transmittance or remove all exceptions
- Create incentives and reward improved details when practical
- Use the guide to help policy and authorities implement programs that are more enforceable

Challenges


- Thermal bridging not recognized by the standards has always existed
- All the compliance paths reference the prescriptive requirements.
- Thermal bridging has to be carried through for all the compliance paths
- U-value requirements likely need to be relaxed if accounting for all thermal bridges


• Window transitions are a big deal

• Window transitions are a big deal

Tools will help the process

Select Area Calculation (Choose One)	Area	Units		Overall Opaque Wall Thermal Performance Values				
O Sum of Active Clear Field Areas (Default)	O	m²		Opaque U- (₩/m²		-		
C User Defined Area	Enter User Defined Opaque Area	m²		Effective R (m²K/		-		
-								Totals
Add/Remove Detail	Transmittance Type	Include	Transmittance Description	Area, Length or Amount Takeoff	Units	Transmittance Value	Units	Suurce Reference
Add Clear Field	Clear Field	V	Enter Description Here	Enter Area Here	m²	Enter Clear Field U- Value Here	W/m'K	Entor Sourco Horo
Add Linear Interface Detail	Linear Interface Detail	V	Enter Description Here	Enter Length Here	m	Enter Psi-Value Here	W/mK	Entor Sourco Horo
Add Point Interface Detail	Point Interface Detail	V	Enter Description Here	Enter Amount Here	#	Enter Chi-Value Here	WK	Enter Source Here

0

Heat Flow

W/K

_

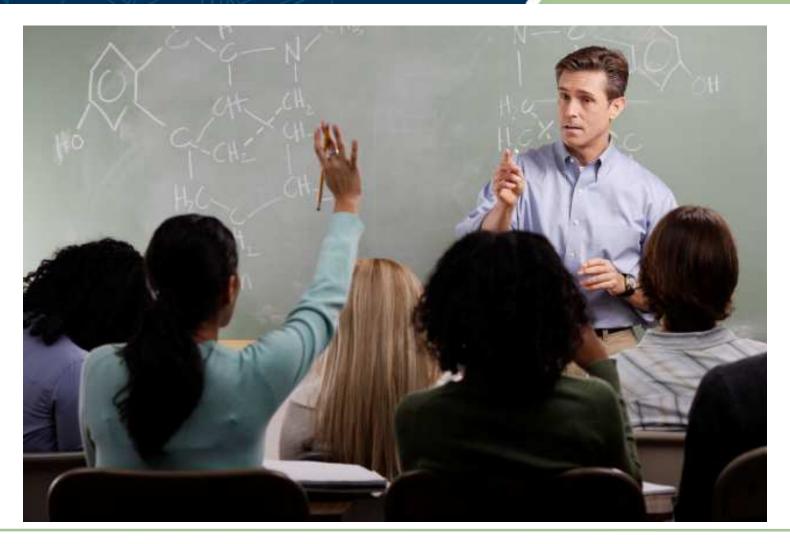
-

0%

%Total Heat Flow

_

-


Conclusion

- Details such as slab penetration are easy to account for in calculation
- Codes do not yet take into account details such as window transitions
- It will likely become increasingly more difficult to ignore thermal bridging at intersections of assemblies
- Move beyond simply adding "more insulation"

Questions?

Thank You

morrisonhershfield.com