

Copyrights and Limitations

This presentation is conceptual and intended to be presented by GHL. Application of concepts to a specific project must be confirmed by a specific GHL/client agreement.

This presentation is copyright GHL Consultants Ltd and all rights are reserved.

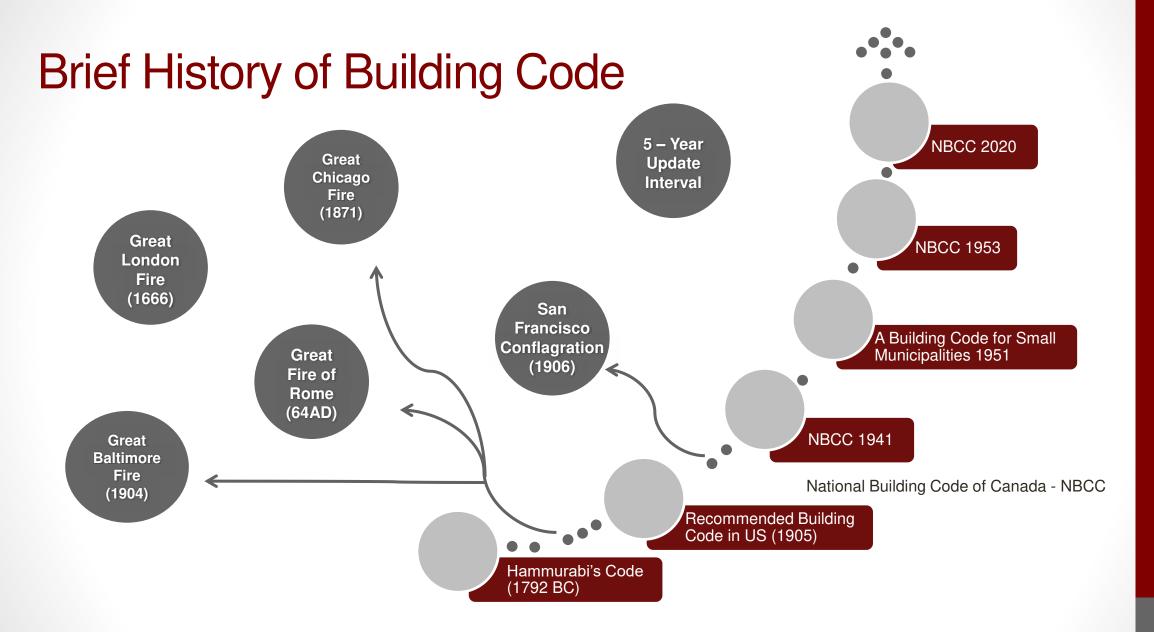
S. Claire Yuan, MASc, P Eng, CP Associate, GHL Consultants Ltd

 Thesis: Challenges Faced in Application of Fire and Life Safety Design in Current Canadian Building Code http://hdl.handle.net/10012/19114

Email: cy@ghl.ca

- Technical Committee CSA O86 Engineering Design in Wood
- Performance Based Design and Code Change Proposal
 - Human Behavior Atrium Evacuation
 - Spatial Separation Sprinkler Performance
 - Mass Timber Research

Where it All Begins



The Great Wall of China (7th Century BC)

The Great Pyramid of Giza (26th Century BC)

Taj Mahal (Completed by 1643)

Current Canadian Building Code Framework

Prescriptive-based design

Objective-based design

Performance-based design

- Specific and quantitative requirements
- Straightforward and simple applications
- Limited flexibility

- Specific and quantitative solutions
- Objectives and functional statements
- Support alternative designs with limitations on quantitative comparison

- Focus on overall building design
- Objectives and functional statements
- Flexible for design team but difficulties in approvals

Current Canadian Building Code Framework

Prescriptive-based design "Requirements"

Objective-based design

Performance-based design

- Specific and quantitative requirements
- Straightforward and simple applications
- Limited flexibility

- Specific and quantitative solutions
- Objectives and functional statements
- Support alternative designs with limitations on quantitative comparison

- Focus on overall building design
- Objectives and functional statements
- Flexible for design team but difficulties in approvals

NBCC 1960 (Attempted)

NBCC between 1960s and 1990s

Current Canadian Building Code Framework

Prescriptive-based design

Objective-based design

"Prescriptive Solutions"

Performance-based design

- Specific and quantitative requirements
- Straightforward and simple applications
- Limited flexibility

- Specific and quantitative solutions
- Objectives and functional statements
- Support alternative designs with limitations on quantitative comparison

- Focus on overall building design
- Objectives and functional statements
- Flexible for design team but difficulties in approvals

NBCC since 2005

NBCC 1960 (Attempted)

NBCC between 1960s and 1990s

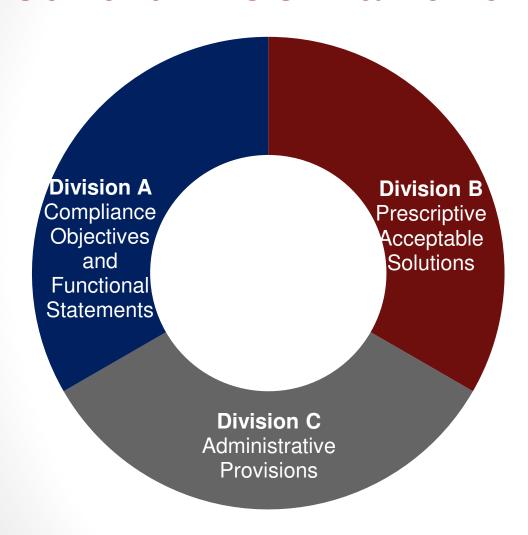
SH CH CH

Current Canadian Building Code Framework

Prescriptive-based design

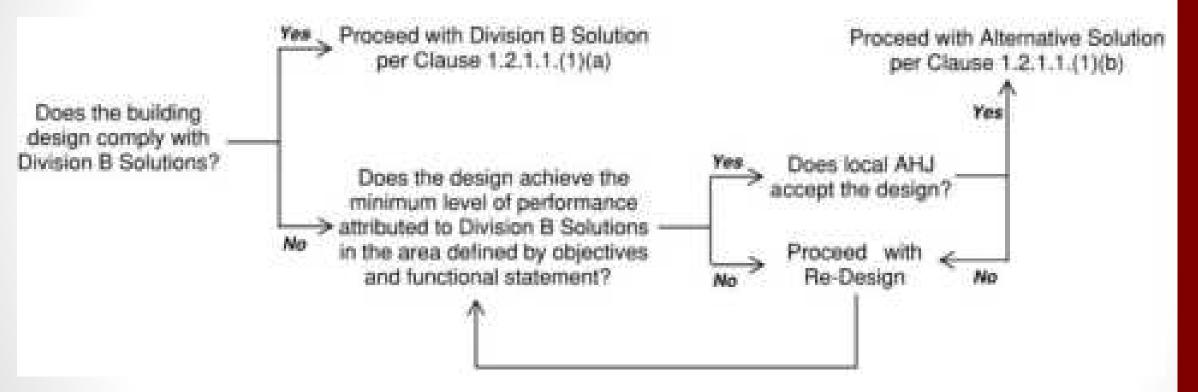
Objective-based design

Performance-based design "Scientific Design"


- Specific and quantitative requirements
- Straightforward and simple applications
- Limited flexibility

- Specific and quantitative solutions
- Objectives and functional statements
- Support alternative designs with limitations on quantitative comparison

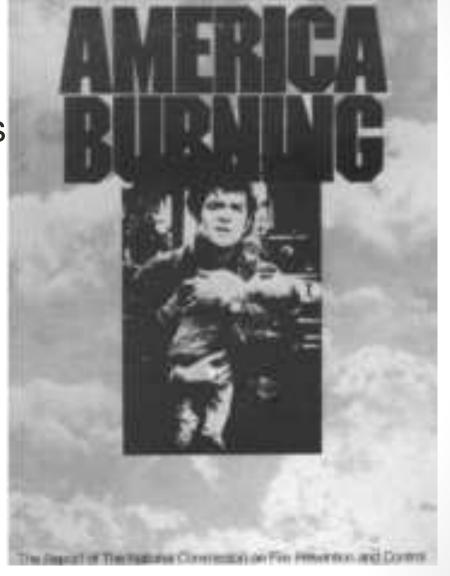
- Focus on overall building design
- Objectives and functional statements
- Flexible for design but difficulties to establish acceptable level of performance


NBCC 1960s (Attempted)

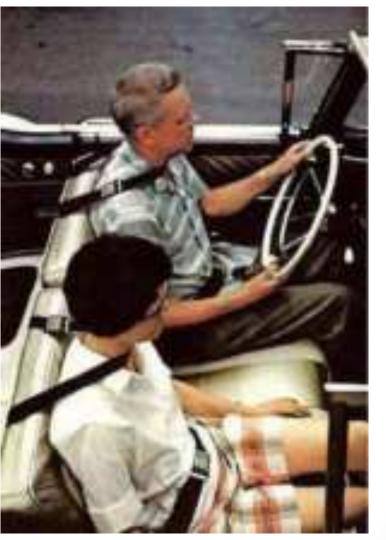
Current NBCC Framework

This presentation focuses on the building design with respect to Fire and Life Safety.

Current NBCC Framework


Current NBCC Framework

A-1.2.1.1.(1)(b) Code Compliance via Alternative Solutions. Where a design differ from the acceptable solutions in Division B, then it should be treated as an "alternative solution." A proportion of an alternative solution must demonstrate that the alternative solution addresses the same issues as the applicable acceptable solutions in Division B and their antibuted objectives and functional statements. However, because the objectives and functional statements are stuitely qualitative, demonstraing compliance with them in isolation is not possible. Therefore, Clause 1.2.1.1.(1)(b) identifies the principle that Division B entablishes the quantitative performance performance performance arguments and that alternative solutions must meet. In many cases, these targets are not defined very precisely by the acceptable solutions—certainly far less precisely than would be the case with a true performance code, which would have quantitative performance targets and prescribed methods of performance measurement for all aspects of building performance. Nevertheless. Clause 1.2.1.1.(1)(b) makes it clear that an effort must be made to demonstrate that an alternative solution will perform at well as a design that would satisfy the applicable acceptable solutions in Division B — not "well enough" but "as well as."


1970s and Before

- Lack of building fire safety measures
- High reliance on firefighting
- Realization of excessive fire deaths

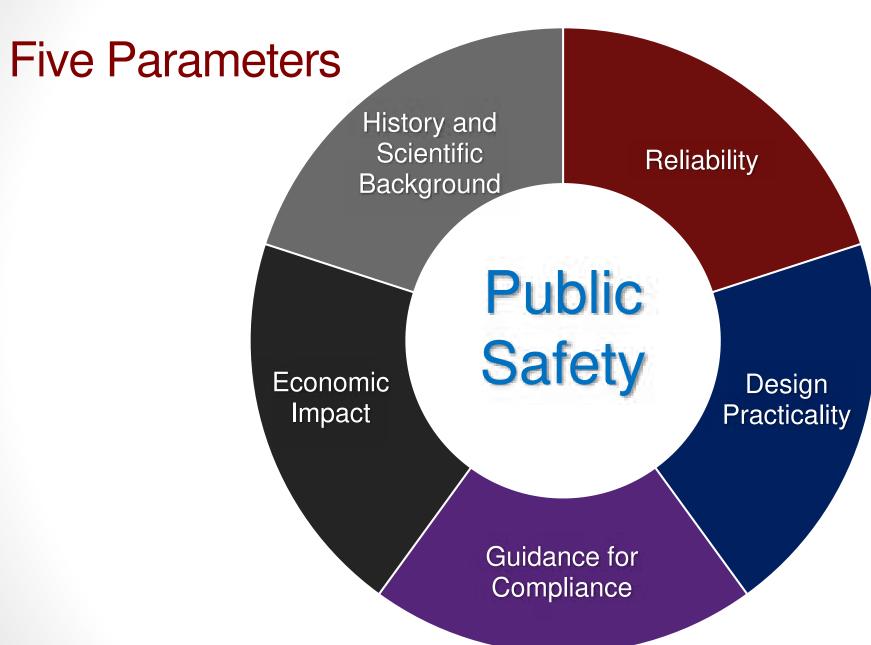
Fire Safety Measures Since 1980s

- Fireblocking and Firestopping
- Smoke alarms
- Automatic detection
- Sprinkler
- Monitored and supervised systems

Balance

- Is the current level of fire safety prescribed in code:
 - appropriate
 - too low
 - too high
- How does it fit into current societal concern around affordability and sustainability?

Three Case Studies



Atrium Design Evacuation

Spatial Separation between Buildings

Exposed Mass Timber Elements

Different Levels of Experience

Need appropriate designer and reviewer in the interest of

public safety

Three Case Studies

Atrium Design Evacuation

Spatial Separation between Buildings

Exposed Mass Timber Elements

Exposed Mass Timber Elements

Exposed Mass Timber Elements

- Simplified to focus on exposed mass timber elements only
- 3 storey, Group C, 3500m², sprinklered
- This material is not recognized in NBCC 2020

This case study is codified in BCBC's 2024 EMTC provisions

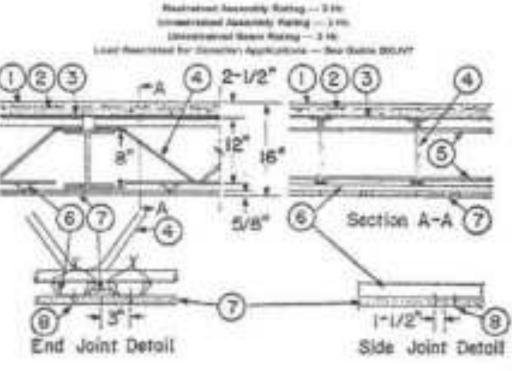
J U U

This case study is codified in BCBC's 2024 EMTC provisions

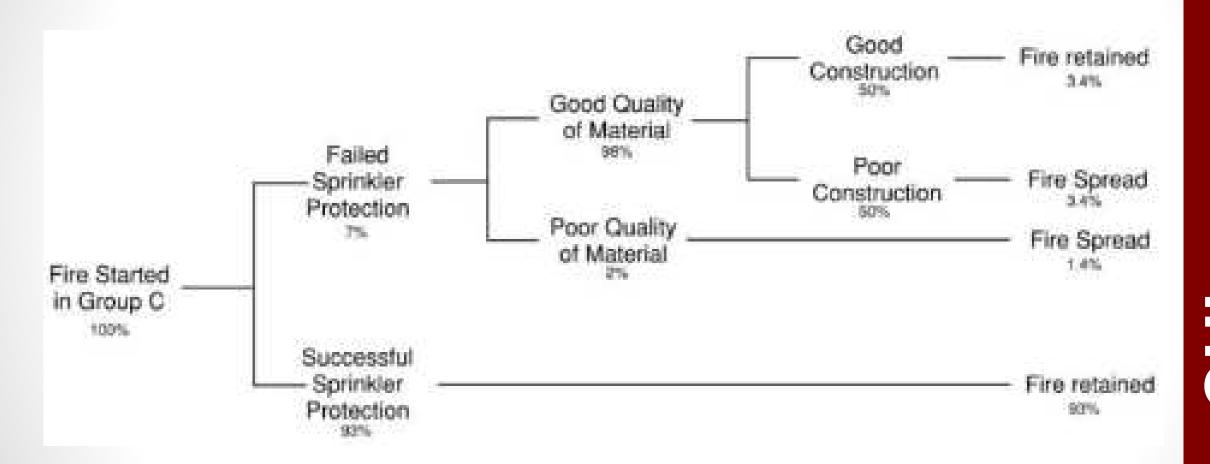
Division B and Alternative Solutions

Article	Alternative Design	3.2.2.48EMTC	3.2.2.49	3.2.2.50
Building Height Permitted	3 Storeys	12 Storeys	3 storeys	3 storeys
Building Areas (m²) Permitted	3,500m²	6,000	4,000	3,000
Construction Requirement	Exposed CLT floor with rest of building non-combustible	EMTC	Noncombustible	Combustible or Noncombustible
Sprinkler	Yes	Yes	No	Yes
Fire Separation of Floor	2h	2h	th	1h

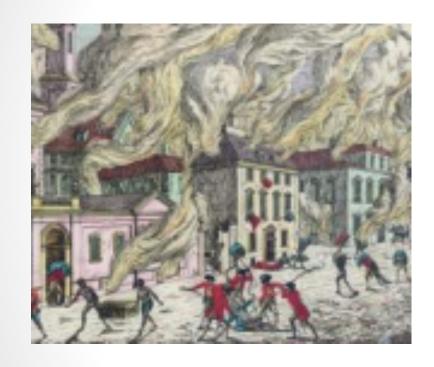
Division B Intent



© Copyright GHL Consultants Ltd. Distribution and reproduction by permission only.


Performance of Solutions - Reliability

Design For 1870 February 15, 2010


Fault Tree Analysis

Conclusions

	Division B Article 3.2.2.49 No Sprinkler Protection, Noncombustible Construction	Alternative Solution Wet Sprinkler Protection. 2 hour rated CLT Construction
Design Intent	Could not satisfy	Yes, will offer exposed natural wood construction and building area of 3,500m ²
Fire Science Support	Specifications appear to be generally accepted without history of their origin and carried over code review cycles without consideration of development of new technology	Forefront research and takes advancement of technology into considerations
Estimated Reliability (normal fire emergencies)	49%	96.3%
Cost Comparison	tie.	Typically 5%-10% higher
Design Practicality	Further studies on post-seismic design required, does not present a sustainable solution in building design.	Offers high seismic durability and post-seismic repair may be localized Reduced cost and construction time. Offers high sustainability in building design and construction

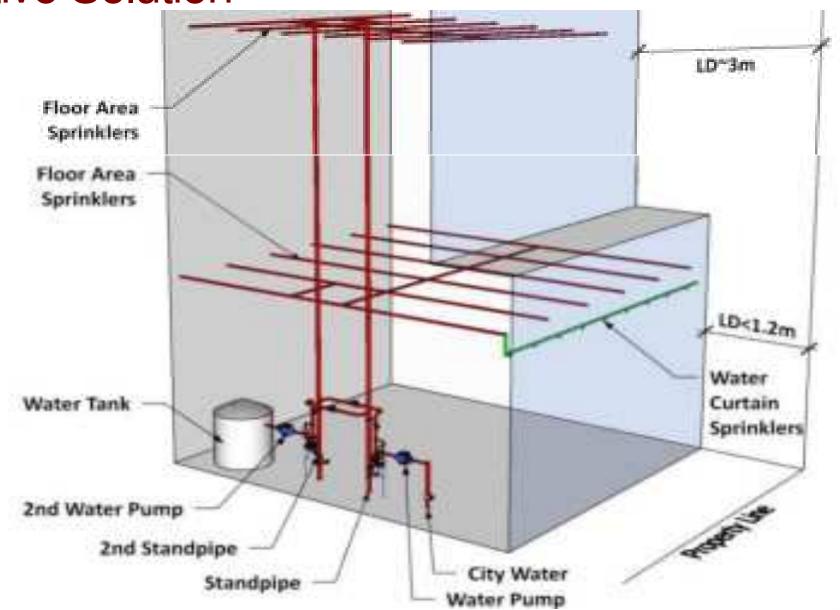
Spatial Separation

Spatial Separation between Buildings

- Simplified to focus on spatial separation of building face in one direction
- Division B Solutions and one Alternative Solution are presented
- To highlight important considerations that arise in current spatial separation designs

Spatial Separation

Division B Intent


Division B Solutions

or

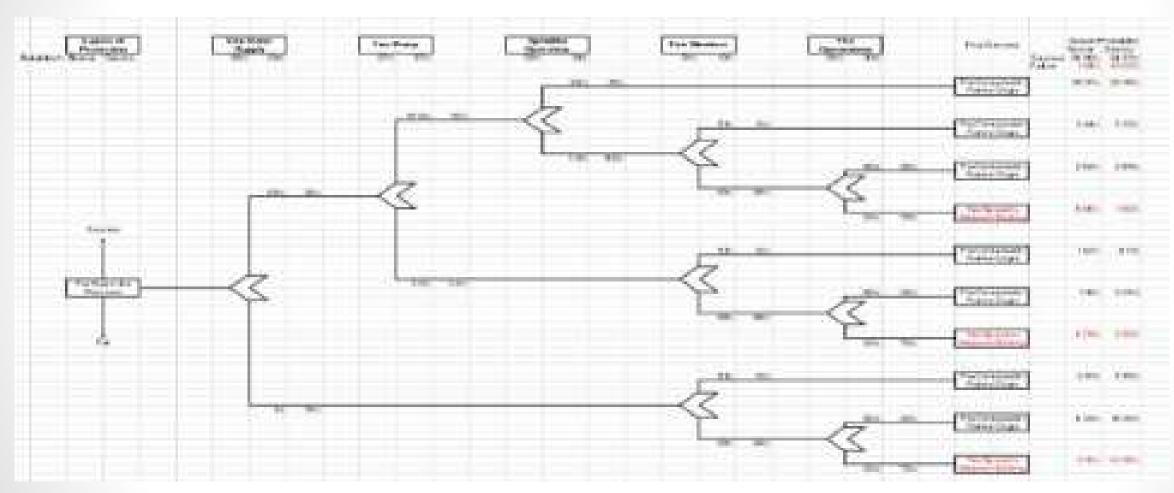
Alternative Solution

only.

Summary of Solutions

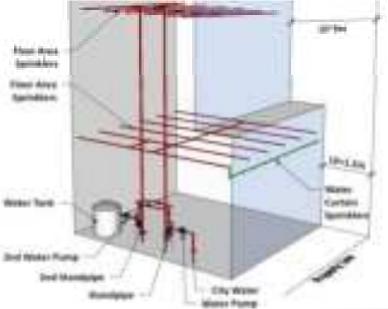
	Division B Solution	Alternative Solution
Area of Opening without Protection	582.9m ²	
Area of Opening with Protection	2,066.6m ²	2,649.5m ²
Protection Method	1h fire rated glazing or Fire Rated Shutters	Sprinkler System with backup tank and secondary pump

History and Scientific Background – Division B Solutions


- Based on unsprinklered residential
 Test 5 results from 1950s
- Assumptions were made and results was simplified for available design at time.
- Some Division B solutions are excessively simplistic
- Arbitrary factor of 2 for sprinklers

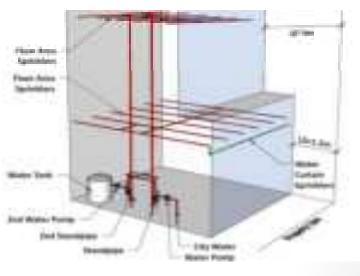
Scientific Background – Alternative Solution

Photo credit: @Glass.on.Web



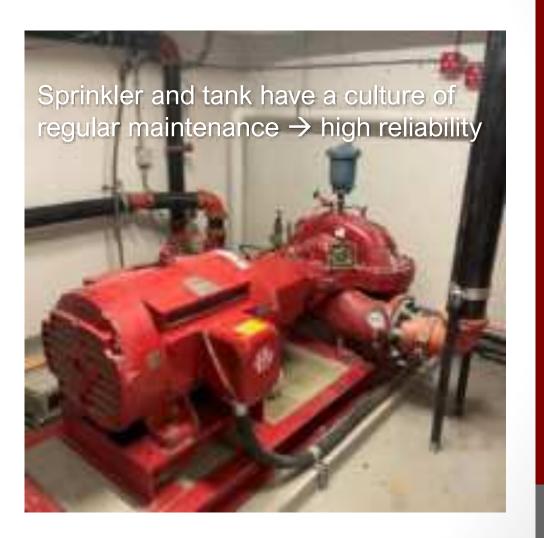
Risk Assessment – Fault Tree Analysis

	Division B Fire Rated Shutters	Alternative Solution Sprinkler with back up tank etc
Probability of Effectiveness	70%	89% to 99%


Reliability - Earthquake

Reliability - Earthquake

	Division B Fire Rated Shutters/Glazing	Alternative Solution Sprinkler with back up tank etc	
Probability of Effectiveness	< 50%	~ 99% with additional tank water supply	



Economic Impact

Division B Solutions		Alternative Solution			
Fire Rated	l Shutters	Fire Rated Glazing		Sprinklers + Tank	
Total Area require protection	2649.5m ²	Total Area require protection	2649.5m ²	Tempered Glazing	Typical
# of fire shutters (15m²)	180	Cost per m ²		Sprinklers	Typical
Cost per piece	\$25,000.00		\$12,850.00	Extra Pump + Tank	\$50,000.00 - \$250,000.00
Material Cost	\$ 4,417,000	Material Cost	\$ 34,028,000	Material Cost	\$ 250,000.00

Design Practicality

Guidance for Compliance – inconsistency in Code

"5.6.3. Exposing Building. Where the exposing building or structure is protected throughout by an approved, properly maintained automatic sprinkler system or other approved automatic fire suppression system of adequate design for the hazard involved, no exposure hazard should be considered to exist."

Credit: @NFPA 80A

"In the case of a building that is sprinklered throughout, the automatic sprinkler system should control the fire to an extent that radiation to neighbouring buildings should be minimal. Although there will be some radiation effect on a sprinklered building from a fire in a neighbouring building, the internal sprinkler system should control any fires that might be ignited in the building and thereby minimize the possibility of the fire spreading into the exposed building. NFPA 80A, "Protection of Buildings from Exterior Fire Exposures," provides additional information on the possibility of fire spread at building exteriors."

Credit: @VBBL.2019

	Division B Fire Rated Shutters/Glazing	Alternative Solution Sprinkler with backup tank
History and Scientific Basis	Data based on limited experiments without later account for the full implications of new technology	Takes into consideration more recent related research findings and development of new technologies
Reliability (normal fire emergencies)	70%	89% to 99%
Reliability (post-earthquake fire emergencies)	50%	89% to 98% Subject to design and site operation
Approximate Cost Estimation	\$4,417,000.00 / \$ 34,028,000.00 \$ 250,000.00	
Design Practicality	May be altered or damaged and thus may not provide full function when needed	Impact of use / changes in the floor area is minimum to the design

Atrium

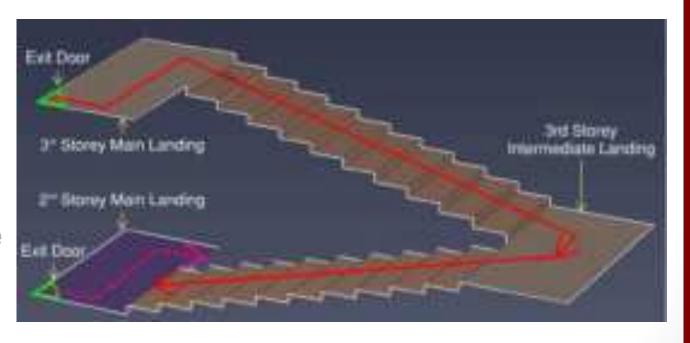
Atrium Design Evacuation

- Simplified to focus on occupant evacuation
- Only considering Division B Solutions
- Reference case to identify important design factors during appropriate Division B application
- Also to demonstrate considerations should be made during alternative solution development

J T T

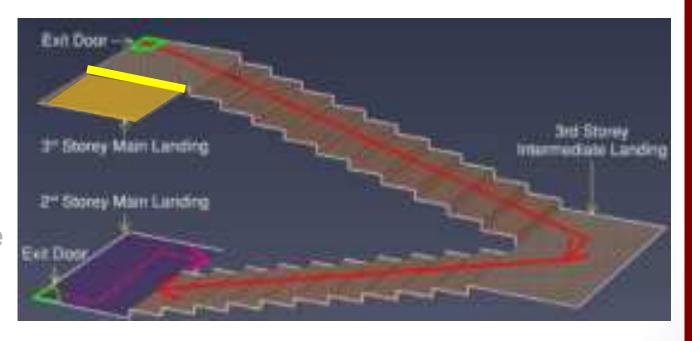
Division B Solution

or


Stutting Code Frontier	Oromon & Substitute	Sparcer Solvables Develope	
NOON.LEAS Species	Spinisher designed to WYA, 13	United the satural solidary design in resident contains tool belonly	
Aphales 3,3,4,4 Translate productions of males and placestors	Ventilates 'E. In provided M. Any Speciage, attractive sorting reason than and attractive and from square (If it) and self-particular than the distance. (If had assuming that the arrows to make committee entiry or the provided with provided their appear.	December made to be designed. Neogle alternative validation.	
MANUAL EST	Full Atrium Designation	gn	
Annual III	Unions deep draff imprior to two experted from severage, timode detectors provided to vicinity of shall attent. Chicarly specied opinions may be required at draff orang per NETA, 13 of five sourcesy detections in Anni Draft 1/8000 in arms and but, a difference has duty. If IR.	Duelly, the defaul facility theigh to replace comproses bylanity	
MINUSTANAI Descriptores	Manual defeate at 8 are changed for the detun-one consumer flow areas.	Producted spinor will reduce as from a typical in course habiting destage	
nnosario	Controlling control test of Flight' with the IFD whose the collect length sections. By controlling control generally return to booking posturing present frontess.	This would be proude the professorial top landing the function within the game.	

Atrium – Division B Solution

Building Code Provision	Division B Solutions	Typical Building Design Concerns	
Article 3.2.8.4	Pressurized vestibules with doorways not less than 1.8m apart to be provided at any openings, elevators serving more than just interconnected floor space (IFS) and exit	Floor space may not be available	
Smoke protection	opening directly into the atrium.	to compensate the provision of	
of exits and elevators	Or exit opening into the atrium to meet cumulative exiting or be provided with protected floor space.	additional vestibules.	
	Provide protected floor area via:	0	
	 Cumulative exiting for all IFS floors, or 	 Cumulative exiting will result in unrealistic stair width 	
Article 3.2.8.5	 Stair treads and landings is not less than 0.3m² times total occupant load in IFS, or 	 Stair treads and landing may not be reasonably used 	
Exiting	 Protected floor spaces connecting directly to an exit and not less than 0.5m² of occupant load of each floor in IFS and are separated from IFS by a 2h fire separation. 	Floor space may not be desired to compensate the provision of Protected floor spaces	


Atrium – Performance of Division B Solutions

- History and Scientific Background
- Reliability
- Economic Impact
- Design Practicality
- Guidance for Compliance

Atrium – Performance of Division B Solutions

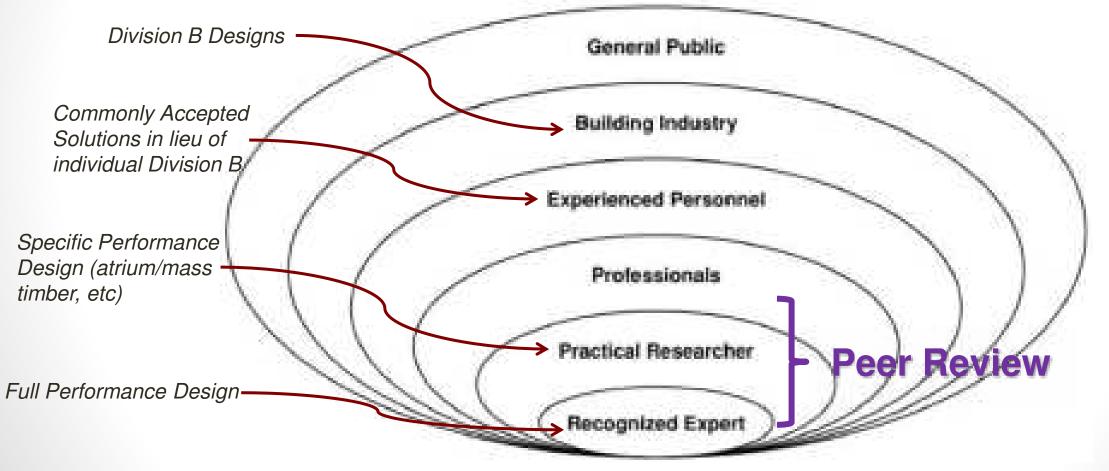
- History and Scientific Background
- Reliability
- Economic Impact
- Design Practicality
- Guidance for Compliance

Looking Forward

"We shape our buildings; thereafter they shape us."

Winston Churchill

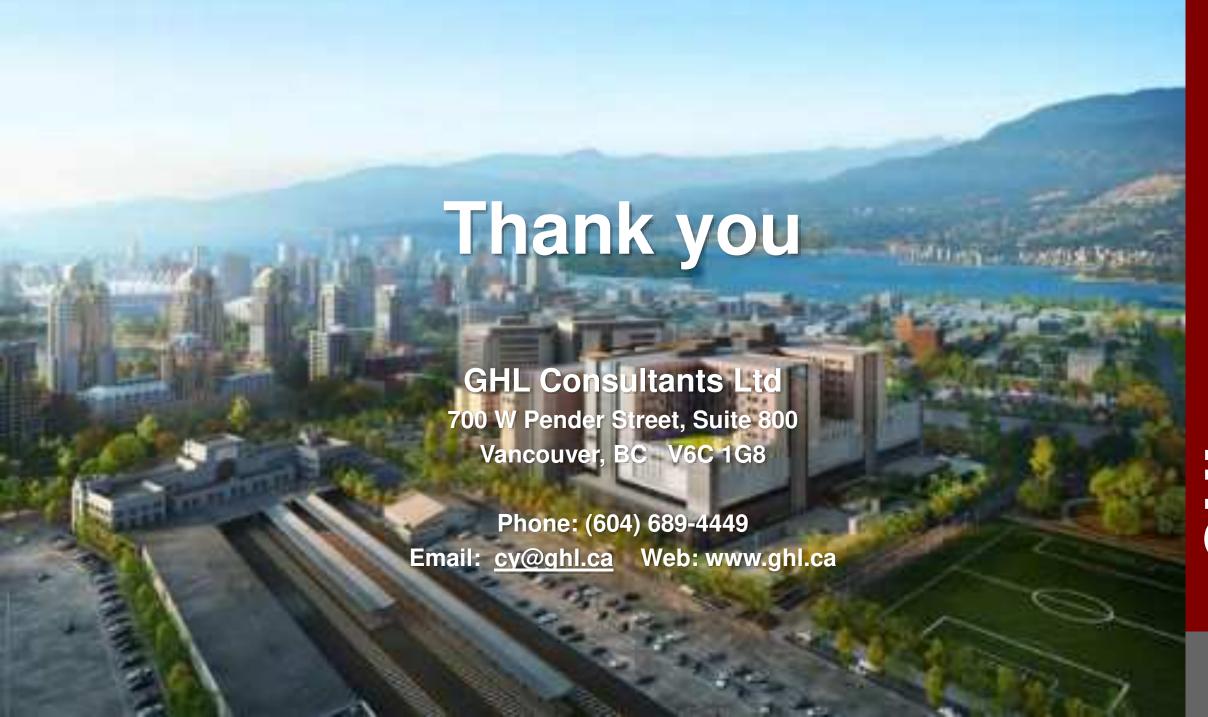
Conclusions


- NBCC intents are qualitative and challenging for innovation, economics and sustainability
- Scientific gaps and lack of documentation in NBCC
- Outdated knowledge and tools within NBCC
- Inconsistency in NBCC leading to complexities
- Fail to recognize the local risks such as earthquakes in Division B Part 3
- Lack of guidance for appropriate design and review for innovative solutions

Quantifying Level of Performance

- Statistic Assessment
 - Canadian Sprinkler Design and Reliability
 - Canadian Fire Statics reflecting modern design
- Smoke Control Measures 1% Contaminated Air
- Application of seismics risk analysis specific to fire safety design

Potential Framework and Peer Review Process


Appropriate Design and Review

Future Works

- Do additional measures in modern design improve the level of safety?
- Re-assess the decisions of the early codes
- Encourage upgrading of the old housing stock pre-1980.
- Review Process

