BC Step Codes in Action

BOABC Conference

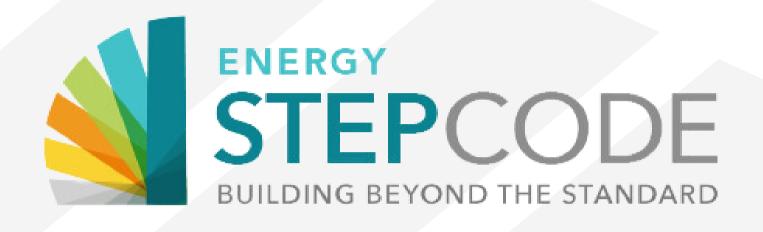
May 29, 2024

Principal Carbon Wise

Natalie Douglas

ZEBx Program Manager ZEIC

Henri Belisle


President TQ Construction

Henri is also the chair of HAVAN (Homebuilders Association of Vancouver)

Let's get a sense of the room

How many of you would describe yourselves as familiar with the ZCSC?

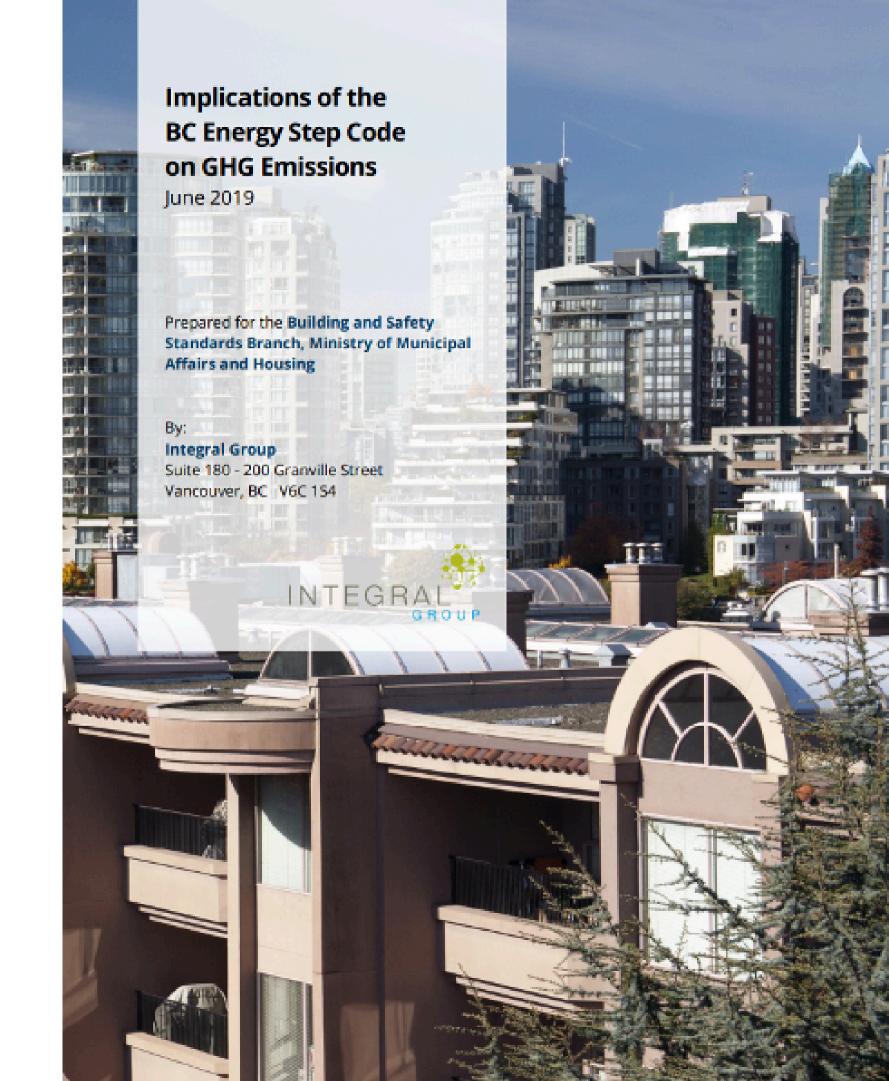
How many of you are building officials or folks working in the front lines of development (plan checkers, etc.)?

Seeks to address energy consumption via increased energy efficiency measures

Part 9: Section 9.36

Part 3: Section 10.2

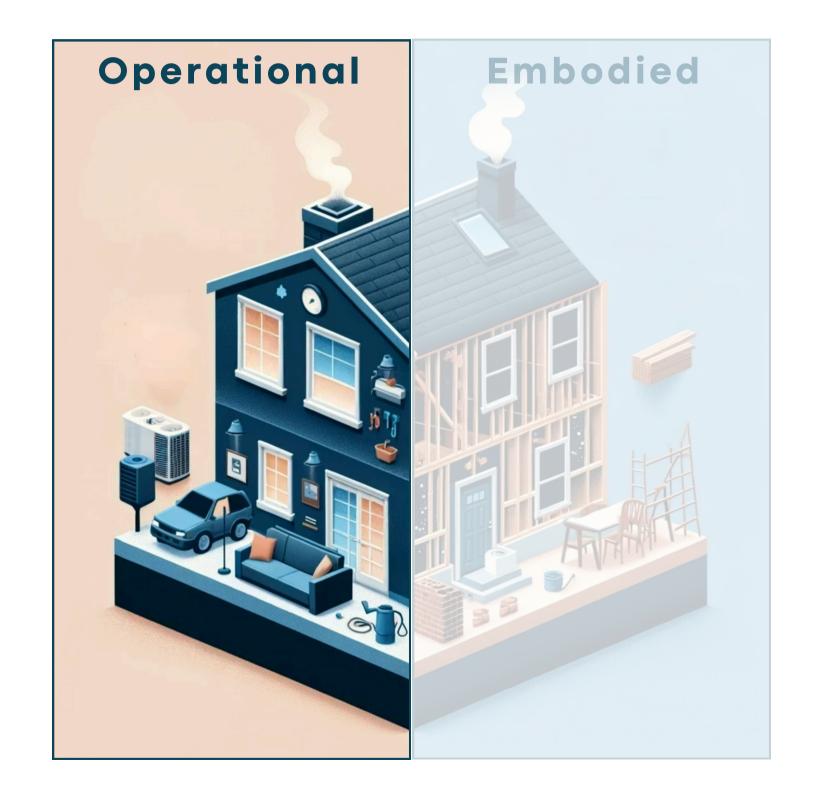
Seeks to address energy source emissions via encouraging mechanical systems that use energy sources with a lower emissions factor.


Part 9: Section 9.37

Part 3: Section 10.3

Why was it developed?

....significant variation in the greenhouse gas intensity associated with the Energy Step Code's efficiency standards. The Zero Carbon Step Code was established to reduce greenhouse gas emissions.

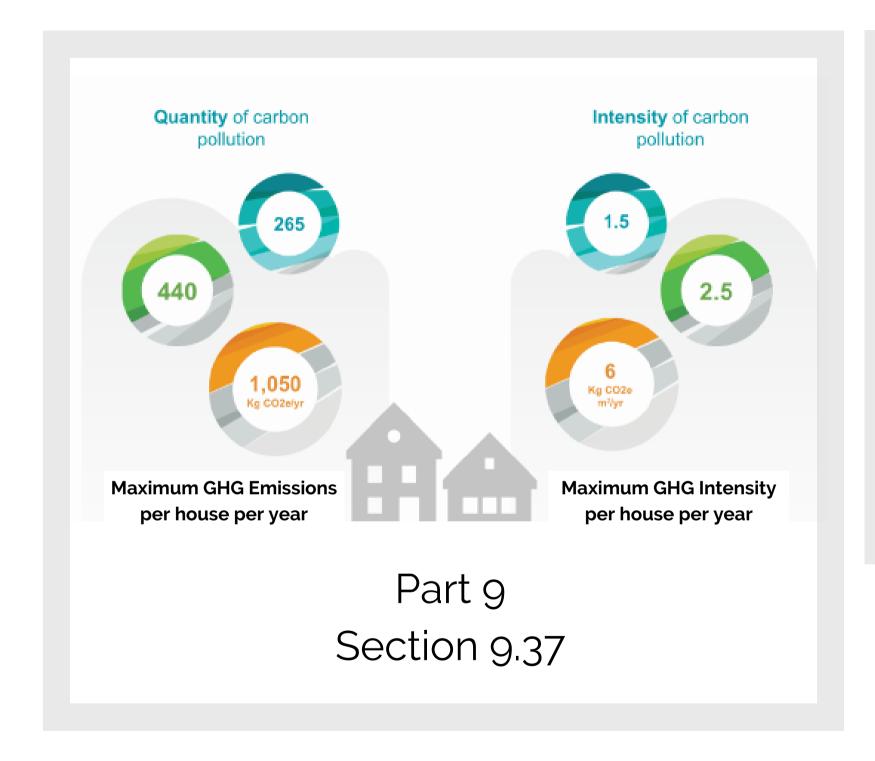

Different types of GHG Emissions

Top 3 sources of Operational Emissions

O1 Fossil Fuel Space Heating

Possil Fuel Domestic
Hot Water Heating

Fossil Fuel Cooking Appliances



O1 Concrete

02 Steel

Petroleum-based insulation

Top 3 sources of Embodied Emissions

Performance Greenhouse Gas Emissions Forming part of Sentence 9.37.1.3.(1)

Prescriptive

	GHG Emission Compliance Options					S
GHG			Maximum GHG Emissions by House			
Emission Level	Maximum GHG Emissions by House, Expressed in kg CO _{2e} /year		Maximum GHGI of the House, Expressed in kgCO _{2e} /m²/year	Maximum GHG Emissions by House, Expressed in kgCO _{2e} /year		Reduction of GHG Emissions by Energy Source of Building Systems ²
<u>EL-1</u>	measure only		measure only			<u>N/A</u>
<u>EL-2</u>	1050	<u>or</u>	6.0	2400	<u>or</u>	Energy sources supplying heating systems have an emissions factor ≤ 0.011 kgCO _{2e} /kWh
<u>EL-3</u>	440		<u>2.5</u>	800		Energy sources supplying heating and service water heating systems have an emissions factor ≤ 0.011 kgCO _{2e} /kWh
EL-4	265		<u>1.5</u>	500		Energy sources supplying all building systems, including equipment and appliances, have an emissions factor ≤ 0.011 kgCO _{2e} /kWh

Notes to Table 9.37.1.3.:

⁽¹⁾ Compliance for this option is demonstrated by meeting both the GHGI and the GHG emission requirements for each house.

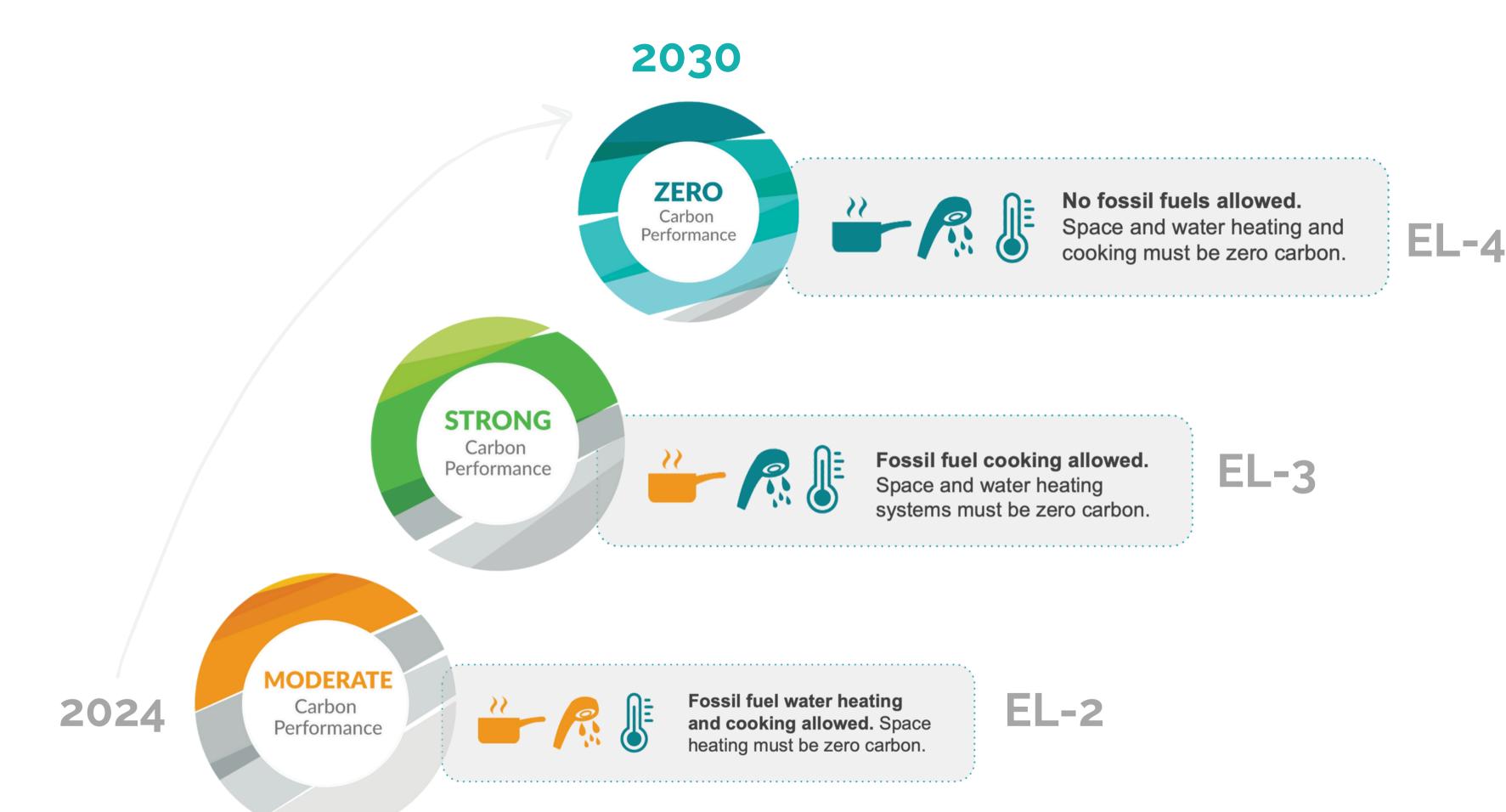
⁽²⁾ Redundant or back-up equipment for the systems and equipment listed in Sentence 9.36.5.4.(1). is permitted to be excluded, provided it is equipped with controls and is not required to meet the space-conditioning load of the house.

SUPPLEMENTARY INFORMATION

Supplementary information is not required for Code Compliance but may be requested by the local municipality/district. Where applicable, all metrics within Section F are calculated with baseloads included. If required, complete the applicable sections below.

F: OTHER ENERGY MODELLING METRICS

	#	Metric	Units	Reference House	Proposed House
	1	Normalized Leakage Area (NLA) @10Pa	cm ² /m ²	-	-
	2	Rated Greenhouse Gas Emissions	kg/year	-	-
) [3	Rated Greenhouse Gas Intensity	kg/m²/year	-	-
4	4	Rated Energy Use Intensity	GJ/m²/year	-	-
	5	Peak Thermal Load (PTL)	W/m ²	-	-
	6	% of the Building's Conditioned Space Served by Space- Cooling Equipment	%	N/A	-
	7	% Lower Than Reference House With Baseloads Included	%	N/A	-


#	Energy Source	Reference House Energy Consumption (GJ/year)	Proposed House Energy Consumption (GJ/year)
	Electricity	•	
	Natural Gas	•	-
	Propane	•	-
8	District Energy	N/A	-
	On-Site Renewables	N/A	-
	Other:	•	-
	Total	0	0

This isn't novel.

More reliance on these Hot2000 outputs.

G: ZERO CARBON STEP CODE

					Proj	posed Calculations
	Proposed House Metrics	Unit	Unit Proposed Level Requirement EL-1 - EL-4 0.00		Proposed	Proposed House
Zero Carbon Step (Code Level	EL-1 - EL-4			- House Result	Pass or Fail
Гotal GHG		kg CO₂₀/ year	#N/A	(max)	0	#N/A
CO _{2e} per floor	Per Floor area	kg CO ₂ /m²/year	#N/A	(max)	#DIV/0!	#DIV/0!
rea with max	Max	kg CO _{2e}	#N/A	(max)	0	#D1V/0:
		Heating	#N/A		Zero Carb	
Prescriptive		Hot Water	#N/A		Zero Carb	Error
	All buildir	g systems, equipment and appliances	#N/A		Zero Carb	
				T	arget Reached:	#N/A

Local Government Experience

2020-2022 2021 - 2024 2020 - 2023

~60% met the ZCSC
Minimum (with the majority
of those meeting EL-4)

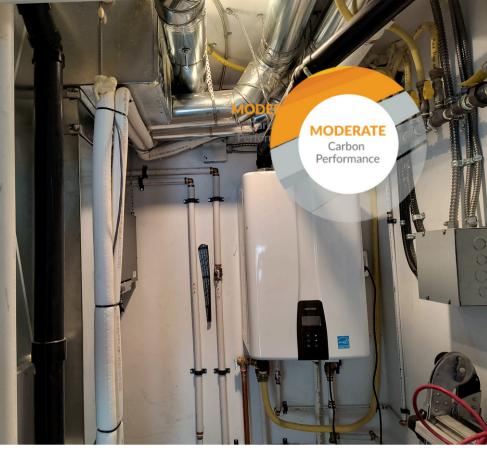
~24% met the ZCSC Minimum (with the majority of those meeting El-2)

All Electric vs. Gas Heated Homes

~53% of new buildings in 2023 were all-electric (i.e., would meet El-4)

Inlet Panorama 2021 completion

- Family purchased property to build forever home
- Durability + function to suit family
- Must haves: elevator, dual laundry, cooling, EV charging, maximize view
- Built step-5 for sound + overall comfort



Inlet Panorama 2021 completion

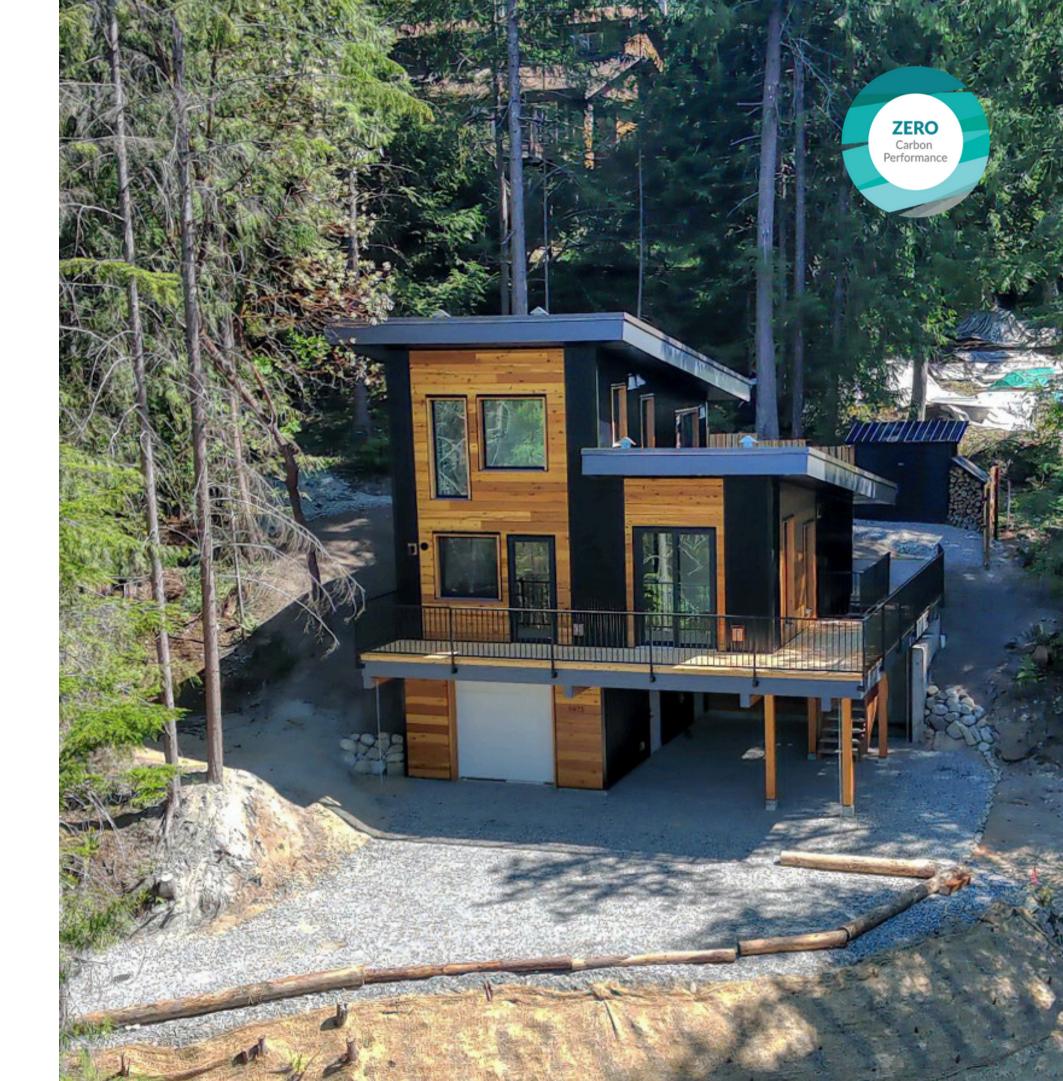
- Step 5, 0.98 ACH, El-2
- electric heating = HP
- Primary Heating + Cooling via electric Heat Pump
- Hot water via on-demand Gas boiler
- Further electrification limited by 200A service + family's long term needs
- Load management needed for EV charging to fit in service
- HVAC cost: ~ 40k

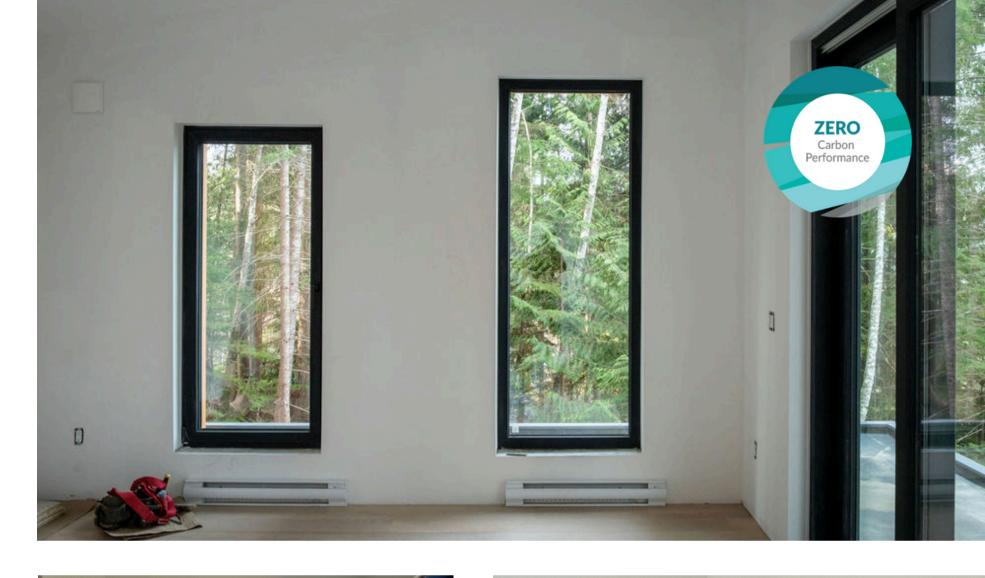
Portland, Burnaby

2022 completion

- Modest plan for 3-4 generations to live in home
- Resilient & durable
- Designed for efficiency and longevity
- Don't like forced air
- Don't use their baseboards very much (feedback).
- Cooling in the summers is passive (heat dome) - overhang
- Not as wealthy of a family, funded project with equity + pooling resources

Portland, Burnaby 2022 completion


- Step 5, under 1 ACH, EL-3
- HP hot water tank, house designed with passive cooling, homeowners didn't want air movement, electric baseboard heat
- comfortably under 200Amp
- Rarely turn on baseboard heat.
- Cooling in the summers is passive (heat dome) - overhangs + cross ventilation
- Cost for HVAC: \$25K


Inlet View, Sechelt 2022 completion

- Step 5, 0.9 ACH, EL-4
- 1,200 sq ft
- GHG: 108.4 kgCO2e/year
- GHGi: 1.24 kgCO2e/m2/year

Inlet View, Sechelt 2022 completion

B: BUILDING CHARAC	CTERISTICS SUMMARY (see BCBC Clause 2.2.8.3.(2)(b) of C		
	Eff RSI , USI, SHGC, etc		
Exterior Walls & 2x1 Floor Headers	10 @ 24" o/c, 9.25" R-34 blown cellulose.	5.28	
Roof / Ceilings 14'	" TJI @ 24" o/c R-52 blown cellulose.	7.97	
Foundation Walls, N/A Headers, & Slabs Sla	Above Frost Line Heated OR Unhe	N/A	
	oove garage: 14" TJI @ 16" o/c R-40 batt. ain: 14" TJI @ 16" o/c, 14" R-52 blown cellulose.	Effective R _{SI}	7.63
& Doors	iple glazed, vinyl frame, low-e coating and argon gas fill. DWR 18.89 %	U _{si} SHGC	USI 0.90 - 1.07 SHGC 0.20 - 0.26
Air Barrier System Ext	terior air barrier, pre-fab panels w/ taped sheathing.		
Space Conditioning Ele (Heating & Cooling)	ectric baseboards	% , HSPF, &/or SEER	100%
Service Water Heating	O Smith HPTU-50N 130 Integrated Heat Pump Water Heater	EF &/or % eff	COP 3.83
Ventilation	x Lunos e2 HRV & 3 x Lunos eGo HRV (total 38 L/s max - alternative lution)		55% SRE (default), no HVI
Other Energy The Impacting Features cor	te building at the above-noted address does not have a fossil fuel innection or use.		
Based on information pro	17-Mar-23		

Phoenix House, Abbotsford

In Progress (2024)

• Step 5, under 1 ACH, EL-4

• 3,400 sq ft

• GHG: 149kgCO2e/year

• GHGi: 0.5kgCO2e/m2/year

Phoenix House, Abbotsford

In Progress (2024)

- No gas connection
- Multi-generational
- Load Management System
- Integrated Design Process

	Principal ASHP with electronic induction backup			9.00		
Space Heating/	(both principal unit and suite to have similar, but distinct, sytems)			15.00		
Cooling	Supplementary Electronic induction backup to ASHP			100.00		
Demostic Het Weter	Heat Pump Hot wa	ater Tank - 50 US Gal in primary dwelling,	EF	0.90		
Domestic Hot Water	Heat Pump Hot wa	EF	0.90			
Ventilation	HRV X 2		% EFF	L/s		
ventilation			65.00	42.47		
Other	Drain water heat re	%Eff	>30%			
	The building including all units is designed with NO fossil fuel use or infrastructure					
Fossil Fuels						
	Drain water heat recovery					

Key Takeaways

- Energy & Zero Carbon Step Code are complementary
- Resiliency in mind
- Zero Carbon Step Code is accessible
- There are multiple ways to meet compliance

Original 1881 Joss Temple

